Inverse Trigonometric Functions | Fundamental Integration Formulas

In applying the formula (Example: Formula 1 below), it is important to note that the numerator du is the differential of the variable quantity u which appears squared inside the square root symbol. We mentally put the quantity under the radical into the form of the square of the constant minus the square of the variable.
 
1. $\displaystyle \int \dfrac{du}{\sqrt{a^2 - u^2}} = \arcsin \, \dfrac{u}{a} + C, \,\,\, a > 0$

2. $\displaystyle \int \dfrac{du}{a^2 + u^2} = \dfrac{1}{a}\arctan \, \dfrac{u}{a} + C$

3. $\displaystyle \int \dfrac{du}{u\sqrt{u^2 - a^2}} = \dfrac{1}{a} {\rm arcsec} \, \dfrac{u}{a} + C$
 

Trigonometric Functions | Fundamental Integration Formulas

Basic Formulas

1. $\displaystyle \int \sin u \, du = -\cos u + C$

2. $\displaystyle \int \cos u \, du = \sin u + C$

3. $\displaystyle \int \sec^2 u \, du = \tan u + C$

4. $\displaystyle \int \csc^2 u \, du = -\cot u + C$

5. $\displaystyle \int \sec u \, \tan u \, du = \sec u + C$

6. $\displaystyle \int \csc u \, \cot u \, du = -\csc u + C$
 

Logarithmic Functions | Fundamental Integration Formulas

The limitation of the Power Formula $\displaystyle \int u^n \, du = \dfrac{u^{n + 1}}{n + 1} + C$, is when $n = -1$; this makes the right side of the equation indeterminate. This is where the logarithmic function comes in, note that $\displaystyle \int u^{-1} \, du = \displaystyle \int \frac{du}{u}$, and we can recall that $d(\ln u) = \dfrac{du}{u}$. Thus,
 

$\displaystyle \int \dfrac{du}{u} = \ln u + C$