About

Mathalino.com is a compilation of solved engineering problems from different sources. This website will target the following engineering subjects:

  1. College Algebra
  2. Plane and Spherical Trigonometry
  3. Plane, Solid, and Analytic Geometry
  4. Differential and Integral Calculus
  5. Differential Equations
  6. Advance Engineering Mathematics
  7. Engineering Economy
  8. Engineering Mechanics
  9. Strength of Materials

Problems will be taken from different sources such as past board exams, text books, problems from different competitions, problems emailed by readers, and problems created by the contributors of this website.
 

Relationship Between Arithmetic Mean, Harmonic Mean, and Geometric Mean of Two Numbers

For two numbers x and y, let x, a, y be a sequence of three numbers. If x, a, y is an arithmetic progression then 'a' is called arithmetic mean. If x, a, y is a geometric progression then 'a' is called geometric mean. If x, a, y form a harmonic progression then 'a' is called harmonic mean.
 

Let AM = arithmetic mean, GM = geometric mean, and HM = harmonic mean. The relationship between the three is given by the formula
 

$AM \times HM = GM^2$

 

Below is the derivation of this relationship.
 

Thermal Stress

Temperature changes cause the body to expand or contract. The amount δT, is given by
 

$\delta_T = \alpha L \, (T_f \, - \, T_i) = \alpha L \, \Delta T$

where α is the coefficient of thermal expansion in m/m°C, L is the length in meter, Ti and Tf are the initial and final temperatures, respectively in °C. For steel, α = 11.25 × 10-6 m/m°C.
 

If temperature deformation is permitted to occur freely, no load or stress will be induced in the structure. In some cases where temperature deformation is not permitted, an internal stress is created. The internal stress created is termed as thermal stress.
 

Solution to Problem 257 Statically Indeterminate

Problem 257
Three bars AB, AC, and AD are pinned together as shown in Fig. P-257. Initially, the assembly is stress free. Horizontal movement of the joint at A is prevented by a short horizontal strut AE. Calculate the stress in each bar and the force in the strut AE when the assembly is used to support the load W = 10 kips. For each steel bar, A = 0.3 in.2 and E = 29 × 106 psi. For the aluminum bar, A = 0.6 in.2 and E = 10 × 106 psi.
 

Figure 257