Skip to main content
HomeMATHalinoEngineering Math Review
  • Home
    • Recent
    • Glossary
    • About
  • Algebra
    • Derivation of Formulas
    • Engineering Economy
    • General Engineering
  • Trigo
    • Spherical Trigonometry
  • Geometry
    • Solid Geometry
    • Analytic Geometry
  • Calculus
    • Integral Calculus
    • Differential Equations
    • Advance Engineering Mathematics
  • Mechanics
    • Strength of Materials
    • Structural Analysis
  • CE
    • CE Board: Math
    • CE Board: Hydro Geo
    • CE Board: Design
    • Surveying
    • Hydraulics
    • Timber Design
    • Reinforced Concrete
    • Geotechnical Engineering
  • Courses
    • Exams
    • Old MCQ
  • Forums
    • Basic Engineering Math
    • Calculus
    • Mechanics
    • General Discussions
  • Blogs

Breadcrumbs

You are here:

  1. Home
  2. Support Reactions

Support Reactions

Problem 346 | Equilibrium of Non-Concurrent Force System

Problem 346
A boom AB is supported in a horizontal position by a hinge A and a cable which runs from C over a small pulley at D as shown in Fig. P-346. Compute the tension T in the cable and the horizontal and vertical components of the reaction at A. Neglect the size of the pulley at D.
 

Cable and boom structure

 

  • Read more about Problem 346 | Equilibrium of Non-Concurrent Force System
  • Log in to post comments

Problem 338 | Equilibrium of Parallel Force System

Problem 338
The two 12-ft beams shown in Fig. 3-16 are to be moved horizontally with respect to each other and load P shifted to a new position on CD so that all three reactions are equal. How far apart will R2 and R3 then be? How far will P be from D?
 

338-nagpatungay-napud.gif

 

  • Read more about Problem 338 | Equilibrium of Parallel Force System
  • 1 comment
  • Log in to post comments

Problem 337 | Equilibrium of Parallel Force System

Problem 337
The upper beam in Fig. P-337 is supported at D and a roller at C which separates the upper and lower beams. Determine the values of the reactions at A, B, C, and D. Neglect the weight of the beams.
 

337-nag-patungay-nga-beam.gif

 

  • Read more about Problem 337 | Equilibrium of Parallel Force System
  • Log in to post comments

Problem 336 | Equilibrium of Parallel Force System

Problem 336
The cantilever beam shown in Fig. P-336 is built into a wall 2 ft thick so that it rests against points A and B. The beam is 12 ft long and weighs 100 lb per ft.
 

336-beam-embedded.gif

 

  • Read more about Problem 336 | Equilibrium of Parallel Force System
  • Log in to post comments

Problem 335 | Equilibrium of Parallel Force System

Problem 335
The roof truss in Fig. P-335 is supported by a roller at A and a hinge at B. Find the values of the reactions.
 

335-fink-truss-na-pud.gif

 

  • Read more about Problem 335 | Equilibrium of Parallel Force System
  • Log in to post comments

Problem 334 | Equilibrium of Parallel Force System

Problem 334
Determine the reactions for the beam loaded as shown in Fig. P-334.
 

334-point-rectangular-triangular-loads.gif

 

  • Read more about Problem 334 | Equilibrium of Parallel Force System
  • Log in to post comments

Pagination

  • Previous page ‹‹
  • (Page 4)
Home • Forums • Blogs • Glossary • Recent
About • Contact us • Terms of Use • Privacy Policy • Hosted by Linode • Powered by Drupal
MATHalino - Engineering Mathematics • Copyright 2025 Jhun Vert • All rights reserved