Problem 1009 | Width of aluminum plate reinforcement for the wood section to resist 14 kN-m moment

Problem 1009
A timber beam 150 mm wide by 200 mm deep is to be reinforced at the top and bottom by aluminum plates 6 mm thick. Determine the width of the aluminum plates if the beam is to resist a moment of 14 kN·m. Assume n = 5 and take the allowable stresses as 10 MPa and 80 MPa in the wood and aluminum, respectively.
 

Problem 1005 | Maximum concentrated load at the midspan that the reinforced timber beam can carry

Problem 1005
A timber beam 6 in. by 10 in. is reinforced only at the bottom by a steel plate as shown in Fig. P-1005. Determine the concentrated load that can be applied at the center of a simply supported span 18 ft long if n = 20, fs ≤ 18 ksi and fw ≤ 1200 psi. Show that the neutral axis is 7.1 in. below the top and that INA = 1160 in.4.
 

1005-given-timber-and-steel.gif

 

Problem 1002 | Increase in moment capacity due to steel plate reinforcement Jhun Vert Sun, 04/26/2020 - 12:27 am

Problem 1002
A timber beam is reinforced with steel plates rigidly attached at the top and bottom as shown in Fig. P-1002. By what amount is moment increased by the reinforcement if n = 15 and the allowable stresses in the wood and steel are 8 MPa and 120 MPa, respectively?
 

1002-given-section.gif

 

Chapter 10 - Reinforced Beams

Flexure formula do not apply directly to composite beams because it was based on the assumption that the beam was homogeneous. It is therefore necessary to transform the composite material into equivalent homogeneous section. To do this, consider a steel and wood section to be firmly bolted together so that they can act as one unit. Shown below are the composite wood and steel section and the corresponding equivalent in wood and steel sections.
 

001-equivalent-sections.gif