# aluminum bar

## Solution to Problem 275 Thermal Stress

- Read more about Solution to Problem 275 Thermal Stress
- Log in or register to post comments
- 27567 reads

## Solution to Problem 274 Thermal Stress

**Problem 274**

At what temperature will the aluminum and steel segments in Prob. 273 have numerically equal stress?

- Read more about Solution to Problem 274 Thermal Stress
- Log in or register to post comments
- 22076 reads

## Solution to Problem 273 Thermal Stress

**Problem 273**

The composite bar shown in Fig. P-273 is firmly attached to unyielding supports. An axial force P = 50 kips is applied at 60°F. Compute the stress in each material at 120°F. Assume α = 6.5 × 10^{-6} in/(in·°F) for steel and 12.8 × 10^{-6} in/(in·°F) for aluminum.

- Read more about Solution to Problem 273 Thermal Stress
- Log in or register to post comments
- 35167 reads

## Solution to Problem 269 Thermal Stress

**Problem 269**

As shown in Fig. P-269, there is a gap between the aluminum bar and the rigid slab that is supported by two copper bars. At 10°C, Δ = 0.18 mm. Neglecting the mass of the slab, calculate the stress in each rod when the temperature in the assembly is increased to 95°C. For each copper bar, A = 500 mm^{2}, E = 120 GPa, and α = 16.8 µm/(m·°C). For the aluminum bar, A = 400 mm^{2}, E = 70 GPa, and α = 23.1 µm/(m·°C).

- Read more about Solution to Problem 269 Thermal Stress
- Log in or register to post comments
- 34720 reads

## Solution to Problem 266 Thermal Stress

**Problem 266**

Calculate the increase in stress for each segment of the compound bar shown in Fig. P-266 if the temperature increases by 100°F. Assume that the supports are unyielding and that the bar is suitably braced against buckling.

- Read more about Solution to Problem 266 Thermal Stress
- Log in or register to post comments
- 39900 reads

## Solution to Problem 257 Statically Indeterminate

**Problem 257**

Three bars AB, AC, and AD are pinned together as shown in Fig. P-257. Initially, the assembly is stress free. Horizontal movement of the joint at A is prevented by a short horizontal strut AE. Calculate the stress in each bar and the force in the strut AE when the assembly is used to support the load W = 10 kips. For each steel bar, A = 0.3 in.^{2} and E = 29 × 10^{6} psi. For the aluminum bar, A = 0.6 in.^{2} and E = 10 × 10^{6} psi.

- Read more about Solution to Problem 257 Statically Indeterminate
- Log in or register to post comments
- 18593 reads