A triangle has a variable sides x, y, and z subject to the constraint that the perimeter P is fixed to 18 cm. What is the maximum possible area of the triangle? A. 18.81 cm2 C. 17.78 cm2 B. 16.62 cm2 D. 15.59 cm2 Solution Click here to… Jhun Vert Fri, 06/28/2024 - 21:38 Solution Click here to expand or collapse this section For largest triangle $x = y = z$ $A_{max} = \frac{1}{2}(6^2) \sin 60^\circ$ $A_{max} = 15.588 ~ \text{cm}^2$ Detailed Solution Click here to expand or collapse this section Perimeter of the triangle $x + y + z = 18$ $z = 18 - x - y$ ← Eq. (1) Semi-perimeter of the triangle $s = \frac{1}{2}(18)$ $s = 9 ~ \text{cm}$ Area of the triangle by Heron's formula $A = \sqrt{s(s - x)(s - y)(s - z)}$ ← Eq. (2) $A = \sqrt{9(9 - x)(9 - y)\left[ 9 - (18 - x - y) \right]}$ $A = \sqrt{9(9 - x)(9 - y)(x + y - 9)}$ For maximum possible area of the triangle $\dfrac{\partial A}{\partial x} = \dfrac{9(9 - y) \cdot \left[ (9 - x)(1) + (x + y - 9)(-1) \right]}{2\sqrt{9(9 - x)(9 - y)(x + y - 9)}} = 0$ $9 - x = x + y - 9$ $y = 18 - 2x$ ← Eq. (3) $\dfrac{\partial A}{\partial y} = \dfrac{9(9 - x) \cdot \left[ (9 - y)(1) + (x + y - 9)(-1) \right]}{2\sqrt{9(9 - x)(9 - y)(x + y - 9)}} = 0$ $9 - y = x + y - 9$ $x = 18 - 2y$ ← Eq. (4) Substitute $y = 18 - 2x$ from Eq. (3) to Eq. (4) $x = 18 - 2(18 - 2x)$ $3x = 18$ $x = 6 ~ \text{cm}$ Substitute $x = 6$ to Eq. (3) $y = 18 - 2(6)$ $y = 6 ~ \text{cm}$ Substitute $x = 6$ and $y = 6$ to Eq. (1) $z = 18 - 6 - 6$ $z = 6 ~ \text{cm}$ Hence, from Eq. (2) $A_{max} = \sqrt{9(9 - 6)(9 - 6)(9 - 6)}$ $A_{max} = 15.588 ~ \text{cm}^2$ Log in or register to post comments Log in or register to post comments
Solution Click here to… Jhun Vert Fri, 06/28/2024 - 21:38 Solution Click here to expand or collapse this section For largest triangle $x = y = z$ $A_{max} = \frac{1}{2}(6^2) \sin 60^\circ$ $A_{max} = 15.588 ~ \text{cm}^2$ Detailed Solution Click here to expand or collapse this section Perimeter of the triangle $x + y + z = 18$ $z = 18 - x - y$ ← Eq. (1) Semi-perimeter of the triangle $s = \frac{1}{2}(18)$ $s = 9 ~ \text{cm}$ Area of the triangle by Heron's formula $A = \sqrt{s(s - x)(s - y)(s - z)}$ ← Eq. (2) $A = \sqrt{9(9 - x)(9 - y)\left[ 9 - (18 - x - y) \right]}$ $A = \sqrt{9(9 - x)(9 - y)(x + y - 9)}$ For maximum possible area of the triangle $\dfrac{\partial A}{\partial x} = \dfrac{9(9 - y) \cdot \left[ (9 - x)(1) + (x + y - 9)(-1) \right]}{2\sqrt{9(9 - x)(9 - y)(x + y - 9)}} = 0$ $9 - x = x + y - 9$ $y = 18 - 2x$ ← Eq. (3) $\dfrac{\partial A}{\partial y} = \dfrac{9(9 - x) \cdot \left[ (9 - y)(1) + (x + y - 9)(-1) \right]}{2\sqrt{9(9 - x)(9 - y)(x + y - 9)}} = 0$ $9 - y = x + y - 9$ $x = 18 - 2y$ ← Eq. (4) Substitute $y = 18 - 2x$ from Eq. (3) to Eq. (4) $x = 18 - 2(18 - 2x)$ $3x = 18$ $x = 6 ~ \text{cm}$ Substitute $x = 6$ to Eq. (3) $y = 18 - 2(6)$ $y = 6 ~ \text{cm}$ Substitute $x = 6$ and $y = 6$ to Eq. (1) $z = 18 - 6 - 6$ $z = 6 ~ \text{cm}$ Hence, from Eq. (2) $A_{max} = \sqrt{9(9 - 6)(9 - 6)(9 - 6)}$ $A_{max} = 15.588 ~ \text{cm}^2$ Log in or register to post comments
Solution Click here to…