The denominator of a certain fraction is 1 more than the numerator. If the numerator is increased by 2 and 1/2, the value will be equal to the reciprocal of the original fraction. Find the original fraction. A. 2/3 C. 1/2 B. 3/4 D. 3/8 Solution Click here to… Jhun Vert Fri, 06/07/2024 - 18:39 Solution Click here to expand or collapse this section $\dfrac{x}{x + 1}$ ← the original fraction $\dfrac{x + 2\frac{1}{2}}{x + 1} = \dfrac{x + 1}{x}$ $x^2 + 2\frac{1}{2}x = (x + 1)^2$ $x^2 + 2\frac{1}{2}x = x^2 + 2x + 1$ $\frac{1}{2}x = 1$ $x = 2$ the original fraction = 2/3 Log in or register to post comments Log in or register to post comments
Solution Click here to… Jhun Vert Fri, 06/07/2024 - 18:39 Solution Click here to expand or collapse this section $\dfrac{x}{x + 1}$ ← the original fraction $\dfrac{x + 2\frac{1}{2}}{x + 1} = \dfrac{x + 1}{x}$ $x^2 + 2\frac{1}{2}x = (x + 1)^2$ $x^2 + 2\frac{1}{2}x = x^2 + 2x + 1$ $\frac{1}{2}x = 1$ $x = 2$ the original fraction = 2/3 Log in or register to post comments
Solution Click here to…