Solve for x if log_3 2x - log_3 (x + 5) = 0. Solve for x if log3 2x - log3 (x + 5) = 0. A. 3 C. 5 B. 4 D. 6 Log in or register to post comments Solution Click here to… Jhun Vert Fri, 06/07/2024 - 20:42 Solution Click here to expand or collapse this section $\log_3 2x - \log_3 (x + 5) = 0$ $\log_3 \dfrac{2x}{x + 5} = 0$ Note: $\log_a 1 = 0$ $\log_3 \dfrac{2x}{x + 5} = \log_3 1$ Hence, $\dfrac{2x}{x + 5} = 1$ $2x = x + 5$ $x = 5$ Log in or register to post comments
Solution Click here to… Jhun Vert Fri, 06/07/2024 - 20:42 Solution Click here to expand or collapse this section $\log_3 2x - \log_3 (x + 5) = 0$ $\log_3 \dfrac{2x}{x + 5} = 0$ Note: $\log_a 1 = 0$ $\log_3 \dfrac{2x}{x + 5} = \log_3 1$ Hence, $\dfrac{2x}{x + 5} = 1$ $2x = x + 5$ $x = 5$ Log in or register to post comments
Solution Click here to…