Compute the following: $\displaystyle \sum_{n = 1}^3 \left( \dfrac{n + 1}{n} \right) - \sum_{n = 1}^3 \left( \dfrac{n}{n + 1} \right)$. Compute the following: $\displaystyle \sum_{n = 1}^3 \left( \dfrac{n + 1}{n} \right) - \sum_{n = 1}^3 \left( \dfrac{n}{n + 1} \right)$. A. 35/12 C. 42/11 B. 38/12 D. 56/13 Log in or register to post comments Solution Click here to… Jhun Vert Tue, 06/18/2024 - 12:43 Solution Click here to expand or collapse this section $\begin{align} \displaystyle \sum_{n = 1}^3 \left( \dfrac{n + 1}{n} \right) - \sum_{n = 1}^3 \left( \dfrac{n}{n + 1} \right) & = \left( \dfrac{2}{1} + \dfrac{3}{2} + \dfrac{4}{3} \right) - \left( \dfrac{1}{2} + \dfrac{2}{3} + \dfrac{3}{4} \right) \\ & = \dfrac{29}{6} - \dfrac{23}{12} \\ \\ & = \dfrac{35}{12} \end{align}$ Recommended Solution Click here to expand or collapse this section Log in or register to post comments
Solution Click here to… Jhun Vert Tue, 06/18/2024 - 12:43 Solution Click here to expand or collapse this section $\begin{align} \displaystyle \sum_{n = 1}^3 \left( \dfrac{n + 1}{n} \right) - \sum_{n = 1}^3 \left( \dfrac{n}{n + 1} \right) & = \left( \dfrac{2}{1} + \dfrac{3}{2} + \dfrac{4}{3} \right) - \left( \dfrac{1}{2} + \dfrac{2}{3} + \dfrac{3}{4} \right) \\ & = \dfrac{29}{6} - \dfrac{23}{12} \\ \\ & = \dfrac{35}{12} \end{align}$ Recommended Solution Click here to expand or collapse this section Log in or register to post comments
Solution Click here to…