A cone was formed by rolling a thin sheet of metal in a form of a sector of a circle 72 cm in diameter with a central angle of 150°. Find the volume of the cone. A. 7733 cc C. 7744 cc B. 7722 cc D. 7711 cc Solution Click here to… Jhun Vert Sat, 06/29/2024 - 22:51 Solution Click here to expand or collapse this section $\dfrac{c}{150^\circ} = \dfrac{2\pi(36)}{360^\circ}$ $c = 30\pi ~ \text{cm}$ $2\pi r = 30\pi$ $r = 15 ~ \text{cm}$ $h^2 + 15^2 = 36^2$ $h = \sqrt{1071} \, \text{cm}$ $V = \frac{1}{3}\pi r^2 h$ $V = \frac{1}{3}\pi (15^2)\sqrt{1071}$ $V = 7710.91 ~ \text{cc}$ Log in or register to post comments Log in or register to post comments
Solution Click here to… Jhun Vert Sat, 06/29/2024 - 22:51 Solution Click here to expand or collapse this section $\dfrac{c}{150^\circ} = \dfrac{2\pi(36)}{360^\circ}$ $c = 30\pi ~ \text{cm}$ $2\pi r = 30\pi$ $r = 15 ~ \text{cm}$ $h^2 + 15^2 = 36^2$ $h = \sqrt{1071} \, \text{cm}$ $V = \frac{1}{3}\pi r^2 h$ $V = \frac{1}{3}\pi (15^2)\sqrt{1071}$ $V = 7710.91 ~ \text{cc}$ Log in or register to post comments
Solution Click here to…