Structural Engineering and Construction

Engineering Mechanics, Mechanics of Materials, Structural Analysis, Design of Timber Structures, Design of Steel Structures, Reinforced Concrete Structures, Construction and Management

Maximum Stress of Truss Member Due to Moving Loads

The bridge truss shown in the figure is to be subjected by uniform load of 10 kN/m and a point load of 30 kN, both are moving across the bottom chord



Calculate the following:
1.   The maximum axial load on member JK.

A.   64.59 kN C.   -64.59 kN
B.   -63.51 kN D.   63.51 kN

2.   The maximum axial load on member BC.

A.   47.63 kN C.   -47.63 kN
B.   -74.88 kN D.   74.88 kN

3.   The maximum compression force and maximum tension force on member CG.

A.   -48.11 kN and 16.36 kN
B.   Compression = 0; Tension = 16.36 kN
C.   -16.36 kN and 48.11 kN
D.   Compression = 48.11 kN; Tension = 0


Truss With Tension-Only Diagonals

Diagonals BG, CF, CH, and DG of the truss shown can resist tension only.



If W = 3 kN and P = 0, find the following:
1.   the force in member CF.

A.   4.76 kN C.   4.67 kN
B.   4.32 kN D.   4.23 kN

2.   the force in member BF.

A.   3.2 kN C.   3.4 kN
B.   3.3 kN D.   3.5 kN

3.   the force in member DH.

A.   2.8 kN A.   2.5 kN
B.   2.8 kN D.   2.7 kN


3-Panel Truss with Flexible Cables Used as Diagonals

Flexible cables BE and CD are used to brace the truss shown below.



1.   Determine the load W to cause a compression force of 8.9 kN to member BD.

A.   7.80 kN C.   26.70 kN
B.   35.64 kN D.   13.35 kN

2.   Which cable is in tension and what is the tensile reaction?

A.   BE = 12.58 kN C.   BE = 6.29 kN
B.   CD = 6.29 kN D.   CD = 12.58 kN

3.   If W = 20 kN, what will be the tensile reaction of member CE?

A.   6.67 kN C.   0
B.   13.33 kN D.   10 kN



Subscribe to RSS - Structural Engineering and Construction