256 Twisting and bending effects

Problem 256
A vertical shaft AB is 5 ft long and bolted to a rigid support at its lower end A. At its upper end B is attached a horizontal bar BC which is 2 ft long. At the end of C is applied a force P = 180 lb. Force P is perpendicular to the plane containing points A, B, and C. Determine the twisting effect of P on the shaft AB and the bending effect at point A.
 

255 Equivalent loads to a compression member with eccentric load

Problem 255
A short compression member carries an eccentric load P = 200 lb situated 2 in. from the axis of the member, as shown in Fig. P-225. In strength of materials it is learned that the internal stresses are determined from the equivalent axial load and couple into which P may be resolved. Determine the equivalent axial load and couple.
 

Eccentrically loaded compression member

 

249 - Reactions at the bolts of speed reducer gear box

Problem 249
Fig. P-249 represents the top view of a speed reducer which is geared for a four to one reduction in speed. The torque input at the horizontal shaft C is 100 lb·ft. The torque output at the horizontal shaft D, because of the speed reduction, is 400 lb·ft. Compute the torque reaction at the mounting bolts A and B holding the reducer to the floor. Hint: The torque reaction is caused by the unbalanced torque, which is a couple.
 

Top view of speed reduction gear box

 

248 - Broken handwheel replaced by lever to close a gate valve

Problem 248
To close a gate valve it is necessary to exert two forces of 60 lb at opposite sides of a handwheel 3 ft in diameter. Through an accident the wheel is broken and the valve must be closed by a thrusting bar through a slot in the valve stem and exerting a force 4 ft out from the center. Determine the force required and draw a free-body diagram of the bar.