Skip to main content
HomeMATHalinoEngineering Math Review

Search form

Login • Register

  • Home
    • Recent
    • Glossary
    • About
  • Algebra
    • Derivation of Formulas
    • Engineering Economy
    • General Engineering
  • Trigo
    • Spherical Trigonometry
  • Geometry
    • Solid Geometry
    • Analytic Geometry
  • Calculus
    • Integral Calculus
    • Differential Equations
    • Advance Engineering Mathematics
  • Mechanics
    • Strength of Materials
    • Structural Analysis
  • CE
    • CE Board: Math
    • CE Board: Hydro Geo
    • CE Board: Design
    • Surveying
    • Hydraulics
    • Timber Design
    • Reinforced Concrete
    • Geotechnical Engineering
  • Courses
    • Exams
    • Old MCQ
  • Forums
    • Basic Engineering Math
    • Calculus
    • Mechanics
    • General Discussions
  • Blogs

Breadcrumbs

You are here:

  1. Home
  2. slope of the beam

slope of the beam

Method of Superposition | Beam Deflection

The slope or deflection at any point on the beam is equal to the resultant of the slopes or deflections at that point caused by each of the load acting separately.
 

  • Read more about Method of Superposition | Beam Deflection
  • Log in or register to post comments

Area-Moment Method | Beam Deflections

Another method of determining the slopes and deflections in beams is the area-moment method, which involves the area of the moment diagram.
 

Deviation and Slope of Beam by Area-Moment Method

 

  • Read more about Area-Moment Method | Beam Deflections
  • Log in or register to post comments

Solution to Problem 617 | Double Integration Method

Problem 617
Replace the load P in Prob. 616 by a clockwise couple M applied at the right end and determine the slope and deflection at the right end.
 

  • Read more about Solution to Problem 617 | Double Integration Method
  • Log in or register to post comments

Solution to Problem 616 | Double Integration Method

Problem 616
For the beam loaded as shown in Fig. P-616, determine (a) the deflection and slope under the load P and (b) the maximum deflection between the supports.
 

616-overhang-concentrated.jpg

 

  • Read more about Solution to Problem 616 | Double Integration Method
  • Log in or register to post comments
Home • Forums • Blogs • Glossary • Recent
About • Contact us • Terms of Use • Privacy Policy • Hosted by Linode • Powered by Drupal
MATHalino - Engineering Mathematics • Copyright 2025 Jhun Vert • All rights reserved