Solution to Problem 521 | Flexure Formula
Problem 521
A beam made by bolting two C10 × 30 channels back to back, is simply supported at its ends. The beam supports a central concentrated load of 12 kips and a uniformly distributed load of 1200 lb/ft, including the weight of the beam. Compute the maximum length of the beam if the flexural stress is not to exceed 20 ksi.
- Read more about Solution to Problem 521 | Flexure Formula
- Log in or register to post comments
Solution to Problem 517 | Flexure Formula
Problem 517
A rectangular steel bar, 15 mm wide by 30 mm high and 6 m long, is simply supported at its ends. If the density of steel is 7850 kg/m3, determine the maximum bending stress caused by the weight of the bar.
- Read more about Solution to Problem 517 | Flexure Formula
- Log in or register to post comments
Solution to Problem 511 | Flexure Formula
Problem 511
A simply supported rectangular beam, 2 in wide by 4 in deep, carries a uniformly distributed load of 80 lb/ft over its entire length. What is the maximum length of the beam if the flexural stress is limited to 3000 psi?
- Read more about Solution to Problem 511 | Flexure Formula
- Log in or register to post comments
Solution to Problem 510 | Flexure Formula
Problem 510
A 50-mm diameter bar is used as a simply supported beam 3 m long. Determine the largest uniformly distributed load that can be applied over the right two-thirds of the beam if the flexural stress is limited to 50 MPa.
- Read more about Solution to Problem 510 | Flexure Formula
- Log in or register to post comments
Solution to Problem 504 | Flexure Formula
Problem 504
A simply supported beam, 2 in wide by 4 in high and 12 ft long is subjected to a concentrated load of 2000 lb at a point 3 ft from one of the supports. Determine the maximum fiber stress and the stress in a fiber located 0.5 in from the top of the beam at midspan.
- Read more about Solution to Problem 504 | Flexure Formula
- Log in or register to post comments