# rigid bar

## Problem 361 | Equilibrium of Non-Concurrent Force System

**Problem 361**

Referring to Problem 359, if T = 30 kN and x = 1 m, determine the angle θ at which the bar will be inclined to the horizontal when it is in a position of equilibrium.

- Read more about Problem 361 | Equilibrium of Non-Concurrent Force System
- Log in or register to post comments
- 25649 reads

## Problem 360 | Equilibrium of Non-Concurrent Force System

**Problem 360**

Referring to Problem 359, what value of T acting at x = 1 m from B will keep the bar horizontal.

- Read more about Problem 360 | Equilibrium of Non-Concurrent Force System
- Log in or register to post comments
- 23014 reads

## Problem 359 | Equilibrium of Non-Concurrent Force System

**Problem 359**

A 4-m bar of negligible weight rests in a horizontal position on the smooth planes shown in Fig. P-359. Compute the distance x at which load T = 10 kN should be placed from point B to keep the bar horizontal.

- Read more about Problem 359 | Equilibrium of Non-Concurrent Force System
- Log in or register to post comments
- 31836 reads

## Problem 358 | Equilibrium of Non-Concurrent Force System

**Problem 358**

A bar AE is in equilibrium under the action of the five forces shown in Fig. P-358. Determine P, R, and T.

- Read more about Problem 358 | Equilibrium of Non-Concurrent Force System
- Log in or register to post comments
- 25688 reads

## Solution to Problem 349 | Helical Springs

- Read more about Solution to Problem 349 | Helical Springs
- Log in or register to post comments
- 22042 reads

## Solution to Problem 272 Thermal Stress

**Problem 272**

For the assembly in Fig. 271, find the stress in each rod if the temperature rises 30°C after a load W = 120 kN is applied.

- Read more about Solution to Problem 272 Thermal Stress
- Log in or register to post comments
- 29564 reads

## Solution to Problem 271 Thermal Stress

**Problem 271**

A rigid bar of negligible weight is supported as shown in Fig. P-271. If W = 80 kN, compute the temperature change that will cause the stress in the steel rod to be 55 MPa. Assume the coefficients of linear expansion are 11.7 µm/(m·°C) for steel and 18.9 µm/(m·°C) for bronze.

- Read more about Solution to Problem 271 Thermal Stress
- Log in or register to post comments
- 39194 reads

## Solution to Problem 254 Statically Indeterminate

**Problem 254**

As shown in Fig. P-254, a rigid bar with negligible mass is pinned at O and attached to two vertical rods. Assuming that the rods were initially stress-free, what maximum load P can be applied without exceeding stresses of 150 MPa in the steel rod and 70 MPa in the bronze rod.

- Read more about Solution to Problem 254 Statically Indeterminate
- Log in or register to post comments
- 24980 reads

## Solution to Problem 252 Statically Indeterminate

**Problem 252**

The light rigid bar ABCD shown in Fig. P-252 is pinned at B and connected to two vertical rods. Assuming that the bar was initially horizontal and the rods stress-free, determine the stress in each rod after the load after the load P = 20 kips is applied.

- Read more about Solution to Problem 252 Statically Indeterminate
- Log in or register to post comments
- 21724 reads

## Solution to Problem 251 Statically Indeterminate

**Problem 251**

The two vertical rods attached to the light rigid bar in Fig. P-251 are identical except for length. Before the load W was attached, the bar was horizontal and the rods were stress-free. Determine the load in each rod if W = 6600 lb.

- Read more about Solution to Problem 251 Statically Indeterminate
- Log in or register to post comments
- 21073 reads