Skip to main content
HomeMATHalinoEngineering Math Review

Search form

Login • Register

  • Home
    • Recent
    • Glossary
    • About
  • Algebra
    • Derivation of Formulas
    • Engineering Economy
    • General Engineering
  • Trigo
    • Spherical Trigonometry
  • Geometry
    • Solid Geometry
    • Analytic Geometry
  • Calculus
    • Integral Calculus
    • Differential Equations
    • Advance Engineering Mathematics
  • Mechanics
    • Strength of Materials
    • Structural Analysis
  • CE
    • CE Board: Math
    • CE Board: Hydro Geo
    • CE Board: Design
    • Surveying
    • Hydraulics
    • Timber Design
    • Reinforced Concrete
    • Geotechnical Engineering
  • Courses
    • Exams
    • Old MCQ
  • Forums
    • Basic Engineering Math
    • Calculus
    • Mechanics
    • General Discussions
  • Blogs

Breadcrumbs

You are here:

  1. Home
  2. Polar Area

Polar Area

03 Area Enclosed by Cardioids: r = a(1 + sin θ); r = a(1 - sin θ), r = a(1 + cos θ), r = a(1 - cos θ)

Problem
Find the area individually enclosed by the following Cardioids:
(A)   $r = a(1 - \cos \theta)$
(B)   $r = a(1 + \cos \theta)$
(C)   $r = a(1 - \sin \theta)$
(D)   $r = a(1 + \sin \theta)$
 

003-cardioid-neg-pos-sine-cosine.gif

 

  • Read more about 03 Area Enclosed by Cardioids: r = a(1 + sin θ); r = a(1 - sin θ), r = a(1 + cos θ), r = a(1 - cos θ)
  • Log in or register to post comments

08 Area Enclosed by r = a sin 3θ and r = a cos 3θ

Problem
Find the area bounded by $r = a \sin 3\theta$ and $r = a \cos 3\theta$.
 

008-polar-area-three-leaf_rose_sine_cosine.gif

 

  • Read more about 08 Area Enclosed by r = a sin 3θ and r = a cos 3θ
  • Log in or register to post comments

05 Area Enclosed by r = a sin 2θ and r = a cos 2θ

Problem
Find the area bounded by $r = a \sin 2\theta$ and $r = a \cos 2\theta$.
 

008-polar-area-four-leaf_sine_cosine.gif

 

  • Read more about 05 Area Enclosed by r = a sin 2θ and r = a cos 2θ
  • Log in or register to post comments

01 Area Enclosed by r = 2a cos^2 θ

Problem
Find the area enclosed by r = 2a cos2 θ.
 

004-polar-area-two-leaf-rose-integration.gif

 

  • Read more about 01 Area Enclosed by r = 2a cos^2 θ
  • Log in or register to post comments

07 Area Enclosed by r = 2a cos θ and r = 2a sin θ

Problem
Find the area enclosed by the following:

(a)   $r = 2a \cos \theta$
(b)   $r = 2a \sin \theta$

 

001-polar-area-circle_01.gif

 

  • Read more about 07 Area Enclosed by r = 2a cos θ and r = 2a sin θ
  • Log in or register to post comments

Area for grazing by the goat tied to a silo

Problem
A goat is tied outside a silo of radius 10 m by a rope just long enough for the goat to reach the opposite side of the silo. Find the area available for grazing by the goat. Note that the goat may not enter the silo.
 

grazing-area-goat-figure-1.jpg

 

  • Read more about Area for grazing by the goat tied to a silo
  • Log in or register to post comments

06 Area Within the Curve r^2 = 16 cos θ

Example 6
What is the area within the curve r2 = 16 cos θ?
 

  • Read more about 06 Area Within the Curve r^2 = 16 cos θ
  • Log in or register to post comments

05 Area Enclosed by Four-Leaved Rose r = a cos 2θ

Find the area enclosed by four-leaved rose r = a cos 2θ.
 

  • Read more about 05 Area Enclosed by Four-Leaved Rose r = a cos 2θ
  • Log in or register to post comments

04 Area of the Inner Loop of the Limacon r = a(1 + 2 cos θ)

Example 4
Find the area of the inner loop of the limacon r = a(1 + 2 cos θ).
 

  • Read more about 04 Area of the Inner Loop of the Limacon r = a(1 + 2 cos θ)
  • Log in or register to post comments

03 Area Inside the Cardioid r = a(1 + cos θ) but Outside the Circle r = a

Example 3
Find the area inside the cardioid r = a(1 + cos θ) but outside the circle r = a.
 

  • Read more about 03 Area Inside the Cardioid r = a(1 + cos θ) but Outside the Circle r = a
  • Log in or register to post comments

Pagination

  • (Page 1)
  • Next page ››
Home • Forums • Blogs • Glossary • Recent
About • Contact us • Terms of Use • Privacy Policy • Hosted by Linode • Powered by Drupal
MATHalino - Engineering Mathematics • Copyright 2025 Jhun Vert • All rights reserved