Problem 04 | Laplace Transform of Derivatives

Problem 04
Find the Laplace transform of   f(t)=tsint   using the transform of derivatives.
 

Solution 04
f(t)=tsint       ..........       f(0)=0

f(t)=tcost+sint       ..........       f(0)=0

f(t)=(tsint+cost)+cost=tsint+2cost
 

L{f(t)}=s2L{f(t)}sf(0)f(0)

Laplace Transform of Derivatives

For first-order derivative:
L{f(t)}=sL{f(t)}f(0)
 

For second-order derivative:
L{f(t)}=s2L{f(t)}sf(0)f(0)
 

For third-order derivative:
L{f(t)}=s3L{f(t)}s2f(0)sf(0)f(0)
 

For nth order derivative:

L{fn(t)}=snL{f(t)}sn1f(0)sn2f(0)fn1(0)

 

Problem 04 | Division by t

Problem 04
Find the Laplace transform of   f(t)=cos4tcos5tt.
 

Solution 04
f(t)=cos4tcos5tt

L{f(t)}=L[cos4tcos5tt]

L{f(t)}=L[cos4tt]L[cos5tt]
 

Since
L(cosbt)=ss2+b2
 

Then,

Problem 03 | Division by t

Problem 03
Find the Laplace transform of   f(t)=sin2tt.
 

Solution 03
f(t)=sin2tt

f(t)=12(1cos2t)t

f(t)=12[1tcos2tt]

L{f(t)}=12L[1tcos2tt]

L{f(t)}=12L(1t)12(cos2tt)
 

Since

Problem 02 | Division by t

Problem 02
Find the Laplace transform of   f(t)=e4te3tt.
 

Solution 03
f(t)=e4te3tt

f(t)=e4tte3tt

L{f(t)}=L{e4tt}L{e3tt}
 

Since
L(e4t)=1s4   and

L(e3t)=1s+3
 

Then,