bronze tube

Solution to Problem 250 Statically Indeterminate

Problem 250
In the assembly of the bronze tube and steel bolt shown in Fig. P-250, the pitch of the bolt thread is p = 1/32 in.; the cross-sectional area of the bronze tube is 1.5 in.2 and of steel bolt is 3/4 in.2 The nut is turned until there is a compressive stress of 4000 psi in the bronze tube. Find the stresses if the nut is given one additional turn. How many turns of the nut will reduce these stresses to zero? Use Ebr = 12 × 106 psi and Est = 29 × 106 psi.
 

Figure P-250

 

Solution to Problem 228 Biaxial Deformation

Problem 228
A 6-in.-long bronze tube, with closed ends, is 3 in. in diameter with a wall thickness of 0.10 in. With no internal pressure, the tube just fits between two rigid end walls. Calculate the longitudinal and tangential stresses for an internal pressure of 6000 psi. Assume ν = 1/3 and E = 12 × 106 psi.
 

Solution 228
$\varepsilon = \dfrac{\sigma_x}{E} - \nu \dfrac{\sigma_y}{E} = 0$

Solution to Problem 227 Biaxial Deformation

Problem 227
A 150-mm-long bronze tube, closed at its ends, is 80 mm in diameter and has a wall thickness of 3 mm. It fits without clearance in an 80-mm hole in a rigid block. The tube is then subjected to an internal pressure of 4.00 MPa. Assuming ν = 1/3 and E = 83 GPa, determine the tangential stress in the tube.
 

 
 
Subscribe to RSS - bronze tube