# beam reaction

## Problem 833 | Reactions of Continuous Beams

**Problem 833**

Refer to Problem 825 for which M_{2} = -980 lb·ft and M_{3} = -1082 lb·ft.

## Problem 352 | Equilibrium of Non-Concurrent Force System

**Problem 352**

A pulley 4 ft in diameter and supporting a load 200 lb is mounted at B on a horizontal beam as shown in Fig. P-352. The beam is supported by a hinge at A and rollers at C. Neglecting the weight of the beam, determine the reactions at A and C.

## Problem 351 | Equilibrium of Non-Concurrent Force System

**Problem 351**

The beam shown in Fig. P-351 is supported by a hinge at A and a roller on a 1 to 2 slope at B. Determine the resultant reactions at A and B.

## Problem 338 | Equilibrium of Parallel Force System

**Problem 338**

The two 12-ft beams shown in Fig. 3-16 are to be moved horizontally with respect to each other and load P shifted to a new position on CD so that all three reactions are equal. How far apart will R_{2} and R_{3} then be? How far will P be from D?

## Problem 337 | Equilibrium of Parallel Force System

**Problem 337**

The upper beam in Fig. P-337 is supported at D and a roller at C which separates the upper and lower beams. Determine the values of the reactions at A, B, C, and D. Neglect the weight of the beams.

## Problem 336 | Equilibrium of Parallel Force System

**Problem 336**

The cantilever beam shown in Fig. P-336 is built into a wall 2 ft thick so that it rests against points A and B. The beam is 12 ft long and weighs 100 lb per ft.

## Problem 334 | Equilibrium of Parallel Force System

**Problem 334**

Determine the reactions for the beam loaded as shown in Fig. P-334.

## Problem 333 | Equilibrium of Parallel Force System

**Problem 333**

Determine the reactions R_{1} and R_{2} of the beam in Fig. P-333 loaded with a concentrated load of 1600 lb and a load varying from zero to an intensity of 400 lb per ft.

## Problem 332 | Equilibrium of Parallel Force System

**Problem 332**

Determine the reactions for the beam shown in Fig. P-332.