Two vertices of a rectangle are on the positive x-axis. The other two vertices are on the lines y = 4x and y = 6 - 5x. What is the maximum possible area of the rectangle? A. 0.7 C. 0.9 B. 0.8 D. 1.0 Jhun Vert Thu, 06/27/2024 - 20:59 A. 0.7 C. 0.9 B. 0.8 D. 1.0 Log in or register to post comments Solution Click here to… Jhun Vert Thu, 06/27/2024 - 20:59 Solution Click here to expand or collapse this section For largest rectangle $x = \frac{1}{2}(1.2) = 0.6$ $y = \frac{1}{2}(8/3) = 4/3$ $A_{max} = 0.6(4/3) = 0.8 ~ \text{unit}^2$ Detailed Solution Click here to expand or collapse this section By ratio and proportion $\dfrac{\frac{8}{3} - y}{x} = \dfrac{\frac{8}{3}}{1.2}$ $\frac{8}{3} - y = \frac{20}{9}x$ $y = \frac{8}{3} - \frac{20}{9}x$ Area of the rectangle $A = xy$ $A = x \left( \frac{8}{3} - \frac{20}{9}x \right)$ $A = \frac{8}{3}x - \frac{20}{9}x^2$ ← Eq. (1) For maximum possible area of the rectangle: $\dfrac{dA}{dx} = \frac{8}{3} - \frac{40}{9}x = 0$ $\frac{8}{3} = \frac{40}{9}x$ $x = \frac{3}{5} ~ \text{units}$ From Eq. (1) $A_{max} = \frac{8}{3}\left( \frac{3}{5} \right) - \frac{20}{9}\left( \frac{3}{5} \right)^2$ $A_{max} = 0.8 ~ \text{unit}^2$ Log in or register to post comments Log in or register to post comments
A. 0.7 C. 0.9 B. 0.8 D. 1.0 Jhun Vert Thu, 06/27/2024 - 20:59 A. 0.7 C. 0.9 B. 0.8 D. 1.0 Log in or register to post comments
Solution Click here to… Jhun Vert Thu, 06/27/2024 - 20:59 Solution Click here to expand or collapse this section For largest rectangle $x = \frac{1}{2}(1.2) = 0.6$ $y = \frac{1}{2}(8/3) = 4/3$ $A_{max} = 0.6(4/3) = 0.8 ~ \text{unit}^2$ Detailed Solution Click here to expand or collapse this section By ratio and proportion $\dfrac{\frac{8}{3} - y}{x} = \dfrac{\frac{8}{3}}{1.2}$ $\frac{8}{3} - y = \frac{20}{9}x$ $y = \frac{8}{3} - \frac{20}{9}x$ Area of the rectangle $A = xy$ $A = x \left( \frac{8}{3} - \frac{20}{9}x \right)$ $A = \frac{8}{3}x - \frac{20}{9}x^2$ ← Eq. (1) For maximum possible area of the rectangle: $\dfrac{dA}{dx} = \frac{8}{3} - \frac{40}{9}x = 0$ $\frac{8}{3} = \frac{40}{9}x$ $x = \frac{3}{5} ~ \text{units}$ From Eq. (1) $A_{max} = \frac{8}{3}\left( \frac{3}{5} \right) - \frac{20}{9}\left( \frac{3}{5} \right)^2$ $A_{max} = 0.8 ~ \text{unit}^2$ Log in or register to post comments
A. 0.7 C. 0.9 B. 0.8 D. 1.0
Solution Click here to…