Solve for x if (x + 2) log_b b^x = x. Solve for x if (x + 2) logb bx = x. A. -1, 0 C. -2 B. 1, 2 D. 0, 1 Log in or register to post comments Solution Click here to… Jhun Vert Fri, 06/07/2024 - 20:47 Solution Click here to expand or collapse this section $(x + 2) \log_b b^x = x$ $x(x + 2) \log_b b = x$ $x(x + 2)(1) = x$ $x^2 + 2x = x$ $x^2 + x = 0$ $x(x + 1) = 0$ $x = 0 ~ \text{and} ~ -1$ Log in or register to post comments
Solution Click here to… Jhun Vert Fri, 06/07/2024 - 20:47 Solution Click here to expand or collapse this section $(x + 2) \log_b b^x = x$ $x(x + 2) \log_b b = x$ $x(x + 2)(1) = x$ $x^2 + 2x = x$ $x^2 + x = 0$ $x(x + 1) = 0$ $x = 0 ~ \text{and} ~ -1$ Log in or register to post comments
Solution Click here to…