Circle a has circumference numerically equal to its area. If the certain square has the same area with the circle a, then what would be the length of its sides? A. $\pi \sqrt{2}$ C. $4 \sqrt{\pi}$ B. $\pi \sqrt{3}$ D. $2 \sqrt{\pi}$ Solution Click here to… Jhun Vert Thu, 07/04/2024 - 12:53 Solution Click here to expand or collapse this section Let a = radius of circle a: $\text{Circumference} = \text{Area}$ $2\pi a = \pi a^2$ $a = 2$ For square of side x: $\text{Area of square} = \text{Area of circle } a$ $x^2 = \pi(2^2)$ $x = 2\sqrt{\pi}$ Log in or register to post comments Log in or register to post comments
Solution Click here to… Jhun Vert Thu, 07/04/2024 - 12:53 Solution Click here to expand or collapse this section Let a = radius of circle a: $\text{Circumference} = \text{Area}$ $2\pi a = \pi a^2$ $a = 2$ For square of side x: $\text{Area of square} = \text{Area of circle } a$ $x^2 = \pi(2^2)$ $x = 2\sqrt{\pi}$ Log in or register to post comments
Solution Click here to…