What is the integral of (3 cos^5 x) dx with limits from 0 to pi/2. What is the integral of (3 cos5 x) dx with limits from 0 to pi/2. A. 0.53 C. 1.86 B. 1.6 D. 2.51 Log in or register to post comments Solution by Calculator Click… Jhun Vert Sat, 06/29/2024 - 20:49 Solution by Calculator Click here to expand or collapse this section Set the angle of your calculator into RAD $\displaystyle 3 \int_0^{\pi/2} (\cos x)^5 \, dx = 8/5$ Solution by Walli's Formula Click here to expand or collapse this section $\displaystyle 3 \int_0^{\pi/2} (\cos x)^5 \, dx = 3 \cdot \dfrac{4 \cdot 2}{5 \cdot 3 \cdot 1} \cdot 1 = \dfrac{8}{5}$ Solution by Integration Click here to expand or collapse this section $\begin{align} \displaystyle 3 \int_0^{\pi/2} \cos^5 x \, dx & = 3 \int_0^{\pi/2} \cos x (\cos^2 x)^2 \, dx \\ & = 3 \int_0^{\pi/2} \cos x (1 - \sin^2 x)^2 \, dx \\ & = 3 \int_0^{\pi/2} \cos x (1 - 2 \sin^2 x + \sin^4 x) \, dx \\ & = 3 \left[ \sin x - \dfrac{2 \sin^3 x}{3} + \dfrac{\sin^5 x}{5} \right]_0^{\pi/2} \\ & = 3 \left[ \sin (\pi/2) - \dfrac{2 \sin^3 (\pi/2)}{3} + \dfrac{\sin^5 (\pi/2)}{5} \right] - 3 \left[ 0 \right] \\ & = 3 \left[ 1 - \dfrac{2(1^3)}{3} + \dfrac{1^5}{5} \right] \\ & = \dfrac{8}{5} \end{align}$ Log in or register to post comments
Solution by Calculator Click… Jhun Vert Sat, 06/29/2024 - 20:49 Solution by Calculator Click here to expand or collapse this section Set the angle of your calculator into RAD $\displaystyle 3 \int_0^{\pi/2} (\cos x)^5 \, dx = 8/5$ Solution by Walli's Formula Click here to expand or collapse this section $\displaystyle 3 \int_0^{\pi/2} (\cos x)^5 \, dx = 3 \cdot \dfrac{4 \cdot 2}{5 \cdot 3 \cdot 1} \cdot 1 = \dfrac{8}{5}$ Solution by Integration Click here to expand or collapse this section $\begin{align} \displaystyle 3 \int_0^{\pi/2} \cos^5 x \, dx & = 3 \int_0^{\pi/2} \cos x (\cos^2 x)^2 \, dx \\ & = 3 \int_0^{\pi/2} \cos x (1 - \sin^2 x)^2 \, dx \\ & = 3 \int_0^{\pi/2} \cos x (1 - 2 \sin^2 x + \sin^4 x) \, dx \\ & = 3 \left[ \sin x - \dfrac{2 \sin^3 x}{3} + \dfrac{\sin^5 x}{5} \right]_0^{\pi/2} \\ & = 3 \left[ \sin (\pi/2) - \dfrac{2 \sin^3 (\pi/2)}{3} + \dfrac{\sin^5 (\pi/2)}{5} \right] - 3 \left[ 0 \right] \\ & = 3 \left[ 1 - \dfrac{2(1^3)}{3} + \dfrac{1^5}{5} \right] \\ & = \dfrac{8}{5} \end{align}$ Log in or register to post comments
Solution by Calculator Click…