If 1200 cm^2 of material is available to make a box with a square base and open top, find the largest possible volume of the box. If 1200 cm2 of material is available to make a box with a square base and open top, find the largest possible volume of the box. A. 4000 cc C. 2000 cc B. 3000 cc D. 2500 cc Log in or register to post comments Solution Click here to… Jhun Vert Thu, 06/27/2024 - 21:34 Solution Click here to expand or collapse this section For maximum volume $x = 2y$ $A = x^2 + 4xy$ $1200 = (2y)^2 + 4(2y)(y)$ $12y^2 = 1200$ $y = 10 ~ \text{cm}$ $x = 2(10) = 20 ~ \text{cm}$ $V_{max} = x^2 y = 20^2 (10)$ $V_{max} = 4000 ~ \text{cm}^3$ Detailed Solution Click here to expand or collapse this section Available materialto make the box $A = x^2 + 4xy$ $1200 = x^2 + 4xy$ $y = \dfrac{1200 - x^2}{4x}$ Volume of the box $V = x^2 y$ $V = x^2 \left( \dfrac{1200 - x^2}{4x} \right)$ $V = 300x - \frac{1}{4}x^3$ For the largest possible volume of the box $\dfrac{dV}{dx} = 300 - \frac{3}{4}x^2 = 0$ $300 = \frac{3}{4}x^2$ $x^2 = 400$ $x = 20 ~ \text{cm}$ Hence, $V_{max} = 300(20) - \frac{1}{4}(20^3)$ $V_{max} = 4000 ~ \text{m}^3$ Log in or register to post comments
Solution Click here to… Jhun Vert Thu, 06/27/2024 - 21:34 Solution Click here to expand or collapse this section For maximum volume $x = 2y$ $A = x^2 + 4xy$ $1200 = (2y)^2 + 4(2y)(y)$ $12y^2 = 1200$ $y = 10 ~ \text{cm}$ $x = 2(10) = 20 ~ \text{cm}$ $V_{max} = x^2 y = 20^2 (10)$ $V_{max} = 4000 ~ \text{cm}^3$ Detailed Solution Click here to expand or collapse this section Available materialto make the box $A = x^2 + 4xy$ $1200 = x^2 + 4xy$ $y = \dfrac{1200 - x^2}{4x}$ Volume of the box $V = x^2 y$ $V = x^2 \left( \dfrac{1200 - x^2}{4x} \right)$ $V = 300x - \frac{1}{4}x^3$ For the largest possible volume of the box $\dfrac{dV}{dx} = 300 - \frac{3}{4}x^2 = 0$ $300 = \frac{3}{4}x^2$ $x^2 = 400$ $x = 20 ~ \text{cm}$ Hence, $V_{max} = 300(20) - \frac{1}{4}(20^3)$ $V_{max} = 4000 ~ \text{m}^3$ Log in or register to post comments
Solution Click here to…