Find $\displaystyle \sum_{n = 1}^4 (2k + 1)$. Find $\displaystyle \sum_{n = 1}^4 (2k + 1)$. A. 24 C. 18 B. 36 D. 28 Log in or register to post comments Solution Click here to… Jhun Vert Tue, 06/18/2024 - 10:22 Solution Click here to expand or collapse this section $\begin{align} \displaystyle \sum_{k = 1}^4 (2 \cdot k + 1) & = (2 \cdot 1 + 1) + (2 \cdot 2 + 1) + (2 \cdot 3 + 1) + (2\cdot 4 + 1) \\ & = 3 + 5 + 7 + 9 \\ \\ & = 24 \end{align}$ Solution by Calculator: Log in or register to post comments
Solution Click here to… Jhun Vert Tue, 06/18/2024 - 10:22 Solution Click here to expand or collapse this section $\begin{align} \displaystyle \sum_{k = 1}^4 (2 \cdot k + 1) & = (2 \cdot 1 + 1) + (2 \cdot 2 + 1) + (2 \cdot 3 + 1) + (2\cdot 4 + 1) \\ & = 3 + 5 + 7 + 9 \\ \\ & = 24 \end{align}$ Solution by Calculator: Log in or register to post comments
Solution Click here to…