Solve for y if y = log_2 (log_4 256). Solve for y if y = log2 (log4 256). A. 4 C. 2 B. 3 D. 1 Log in or register to post comments Solution Click here to… Jhun Vert Fri, 06/07/2024 - 20:18 Solution Click here to expand or collapse this section Recommended Solution Use your calculator Manual Calculations $y = \log_2 (\log_4 256)$ $2^y = \log_4 256$ $4^{2^y} = 256$ $4^{2^y} = 4^4$ Hence, $2^y = 4$ $y = \log_2 4$ $y = \log_2 2^2$ $y = 2 \cdot \log_2 2$ $y = 2 \cdot 1$ $y = 2$ ← answer Log in or register to post comments
Solution Click here to… Jhun Vert Fri, 06/07/2024 - 20:18 Solution Click here to expand or collapse this section Recommended Solution Use your calculator Manual Calculations $y = \log_2 (\log_4 256)$ $2^y = \log_4 256$ $4^{2^y} = 256$ $4^{2^y} = 4^4$ Hence, $2^y = 4$ $y = \log_2 4$ $y = \log_2 2^2$ $y = 2 \cdot \log_2 2$ $y = 2 \cdot 1$ $y = 2$ ← answer Log in or register to post comments
Solution Click here to…