Solve for x if $\sqrt[3]{x^2} + \sqrt[3]{x} - 20 = 0$. Solve for x if $\sqrt[3]{x^2} + \sqrt[3]{x} - 20 = 0$. A. 64 C. 48 B. 144 D. 728 Log in or register to post comments Solution Click here to… Jhun Vert Fri, 06/07/2024 - 19:09 Solution Click here to expand or collapse this section Use the CALC function X = 64 will result to zero Answer: x = 64 Another Solution $\sqrt[3]{x^2} + \sqrt[3]{x} - 20 = 0$ $(\sqrt[3]{x})^2 + \sqrt[3]{x} - 20 = 0$ Let $z = \sqrt[3]{x}$ $z^2 + z - 20 = 0$ $z = 4 ~ \text{ and } ~ -5$ For z = 4 $4 = \sqrt[3]{x}$ $x = 64$ Check: $\sqrt[3]{64^2} + \sqrt[3]{64} - 20 = 0$ ← okay! For z = -5 $-5 = \sqrt[3]{x}$ $x = -125$ Check: $\sqrt[3]{(-125)^2} + \sqrt[3]{-125} - 20 = 0$ ← okay! Answer: x = 64 and x = -125 Log in or register to post comments
Solution Click here to… Jhun Vert Fri, 06/07/2024 - 19:09 Solution Click here to expand or collapse this section Use the CALC function X = 64 will result to zero Answer: x = 64 Another Solution $\sqrt[3]{x^2} + \sqrt[3]{x} - 20 = 0$ $(\sqrt[3]{x})^2 + \sqrt[3]{x} - 20 = 0$ Let $z = \sqrt[3]{x}$ $z^2 + z - 20 = 0$ $z = 4 ~ \text{ and } ~ -5$ For z = 4 $4 = \sqrt[3]{x}$ $x = 64$ Check: $\sqrt[3]{64^2} + \sqrt[3]{64} - 20 = 0$ ← okay! For z = -5 $-5 = \sqrt[3]{x}$ $x = -125$ Check: $\sqrt[3]{(-125)^2} + \sqrt[3]{-125} - 20 = 0$ ← okay! Answer: x = 64 and x = -125 Log in or register to post comments
Solution Click here to…