Decompose (6x^2 + x - 37) / (x - 3)(x + 2)(x - 1) into partial fractions A/(x - 3) + B/(x + 2) + C/(x - 1) and solve for C. Decompose $\dfrac{6x^2 + x - 37}{(x - 3)(x + 2)(x - 1)}$ into partial fractions $\dfrac{A}{x - 3} + \dfrac{B}{x + 2} + \dfrac{C}{x - 1}$ and solve for C. A. 2 C. 4 B. 4 D. 5 Log in or register to post comments Solution Click here to… Jhun Vert Fri, 06/07/2024 - 19:01 Solution Click here to expand or collapse this section $\dfrac{6x^2 + x - 37}{(x - 3)(x + 2)(x - 1)} = \dfrac{A}{x - 3} + \dfrac{B}{x + 2} + \dfrac{C}{x - 1}$ Multiply both sides by $(x - 3)(x + 2)(x - 1)$ $6x^2 + x - 37 = A(x + 2)(x - 1) + B(x - 3)(x - 1) + C(x - 3)(x + 2)$ Set $x = 1$ $6 + 1 - 37 = A(1 + 2)(1 - 1) + B(1 - 3)(1 - 1) + C(1 - 3)(1 + 2)$ $-30 = -6C$ $C = 5$ Log in or register to post comments
Solution Click here to… Jhun Vert Fri, 06/07/2024 - 19:01 Solution Click here to expand or collapse this section $\dfrac{6x^2 + x - 37}{(x - 3)(x + 2)(x - 1)} = \dfrac{A}{x - 3} + \dfrac{B}{x + 2} + \dfrac{C}{x - 1}$ Multiply both sides by $(x - 3)(x + 2)(x - 1)$ $6x^2 + x - 37 = A(x + 2)(x - 1) + B(x - 3)(x - 1) + C(x - 3)(x + 2)$ Set $x = 1$ $6 + 1 - 37 = A(1 + 2)(1 - 1) + B(1 - 3)(1 - 1) + C(1 - 3)(1 + 2)$ $-30 = -6C$ $C = 5$ Log in or register to post comments
Solution Click here to…