Structural Engineering and Construction

SEC - Structural Engineering and Construction
Common name: Design

Engineering Mechanics, Mechanics of Materials, Structural Analysis, Design of Timber Structures, Design of Steel Structures, Reinforced Concrete Structures, Construction and Management

Situation
A beam of uniform cross section whose flexural rigidity EI = 2.8 × 1011 N·mm2, is placed on three supports as shown. Support B is at small gap Δ so that the moment at B is zero.
 

design-practice-1-given.gif

 

1.   Calculate the reaction at A.

A.   4.375 kN C.   5.437 kN
B.   8.750 kN D.   6.626 kN

2.   What is the reaction at B?

A.   4.375 kN C.   5.437 kN
B.   8.750 kN D.   6.626 kN

3.   Find the value of Δ.

A.   46 mm C.   34 mm
B.   64 mm D.   56 mm

 

Problem
A tensile load of 8000 kg elongates a 1-m long square rod by 1 mm. Steel modulus of elasticity is 2 × 106 kg/cm2. What is the dimension of a side of the rod?

A.   5 cm C.   2 cm
B.   1 cm D.   4 cm

 

Situation
A temporary earth retaining wall consists of wooden plank driven vertically into the ground. The wall is designed to resist 2.4 m height of soil.

Given the following:
Cross-sectional dimensions of the plank = 300 mm wide × 75 mm thick
Allowable bending stress of the plank = 10.4 MPa
Allowable shear stress of the plank = 0.8 MPa
Unit weight of retained soil = 17.3 kN/m3
Active earth pressure coefficient = 1/3

1.   Calculate the maximum flexural stress.

A.   12.7 MPa C.   8.6 MPa
B.   14.2 MPa D.   10.1 MPa

2.   Calculate the maximum shear stress.

A.   1.11 MPa C.   0.99 MPa
B.   0.33 MPa D.   0.77 MPa

3.   Calculate the minimum thickness of the plank to prevent failure.

A.   90 mm C.   110 mm
B.   80 mm D.   100 mm

Situation
The truss shown in is made from timber Guijo 100 mm × 150 mm. The load on the truss is 20 kN. Neglect friction.

Allowable stresses for Guijo:
Compression parallel to grain = 11 MPa
Compression perpendicular to grain = 5 MPa
Shear parallel to grain = 1 MPa

 

2015-may-design-timber-3member-truss-triangular.gif

 

1.   Determine the minimum value of x in mm.

A.   180 C.   160
B.   150 D.   140

2.   Determine the minimum value of y in mm.

A.   34.9 C.   13.2
B.   26.8 D.   19.5

3.   Calculate the axial stress of member AC in MPa.

A.   1.26 C.   1.57
B.   1.62 D.   1.75

 

Situation
The bridge truss shown in the figure is to be subjected by uniform load of 10 kN/m and a point load of 30 kN, both are moving across the bottom chord
 

2014-may-design-truss-equilateral-triangle-given.gif

 

Calculate the following:
1.   The maximum axial load on member JK.

A.   64.59 kN C.   -64.59 kN
B.   -63.51 kN D.   63.51 kN

2.   The maximum axial load on member BC.

A.   47.63 kN C.   -47.63 kN
B.   -74.88 kN D.   74.88 kN

3.   The maximum compression force and maximum tension force on member CG.

A.   -48.11 kN and 16.36 kN
B.   Compression = 0; Tension = 16.36 kN
C.   -16.36 kN and 48.11 kN
D.   Compression = 48.11 kN; Tension = 0

 

Situation
Diagonals BG, CF, CH, and DG of the truss shown can resist tension only.
 

2016-may-design-truss-with-tension-diagonals.gif

 

If W = 3 kN and P = 0, find the following:
1.   the force in member CF.

A.   4.76 kN C.   4.67 kN
B.   4.32 kN D.   4.23 kN

2.   the force in member BF.

A.   3.2 kN C.   3.4 kN
B.   3.3 kN D.   3.5 kN

3.   the force in member DH.

A.   2.8 kN A.   2.5 kN
B.   2.8 kN D.   2.7 kN

 

Situation
Flexible cables BE and CD are used to brace the truss shown below.
 

2016-may-design-3panel-truss-counter-diagonals.gif

 

1.   Determine the load W to cause a compression force of 8.9 kN to member BD.

A.   7.80 kN C.   26.70 kN
B.   35.64 kN D.   13.35 kN

2.   Which cable is in tension and what is the tensile reaction?

A.   BE = 12.58 kN C.   BE = 6.29 kN
B.   CD = 6.29 kN D.   CD = 12.58 kN

3.   If W = 20 kN, what will be the tensile reaction of member CE?

A.   6.67 kN C.   0
B.   13.33 kN D.   10 kN

 

Pages

Subscribe to RSS - Structural Engineering and Construction