Normal Probability Distribution
$f(x) = \dfrac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left( \frac{x - \mu}{\sigma} \right)^2}$
$z = \dfrac{x - \mu}{\sigma}$
- Read more about Normal Probability Distribution
- Log in or register to post comments
$f(x) = \dfrac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left( \frac{x - \mu}{\sigma} \right)^2}$
$z = \dfrac{x - \mu}{\sigma}$
Binomial Probability Distribution Formula
$ P(x) = p^x \, q^{n - x} \, {_n}C_x $
$P(E)=\dfrac{\text{number of outcomes in }E}{\text{size of sample space}}$
Permutation
$P(n, ~ r) = \dfrac{n!}{(n - r)!}$
Combination
$C(n, ~ r) = \dfrac{n!}{r! \, (n - r)!}$
If there are $m$ ways to do a task and $n$ ways to do another task, the number of ways to do the first then the second task is $m \times n$.
Digit-related, Money-related, etc.