Simplify and solve for y: $y = \ln \left( \dfrac{e^x}{e^{x - 1}} \right)$.
Simplify and solve for y: $y = \ln \left( \dfrac{e^x}{e^{x - 1}} \right)$.
Simplify and solve for y: $y = \ln \left( \dfrac{e^x}{e^{x - 1}} \right)$.
Simplify and solve for y: $y = \ln \left( \dfrac{e^x}{e^{x - 1}} \right)$.
Simplify and solve for y: $y = \ln \left( \dfrac{e^x}{e^{x - 1}} \right)$.
Solve for x if $ln (x + 1) = 0$.
Solve for x if $e^{2x - 1} = 5$.
Solve for x if $e^{\ln (2x - 1)} = 5$.
Solve for x if $\ln x = 2 + \ln (1 - x)$.
Solve for x if $e^{\ln (1 - x)} = 2x$.
Without the use of calculator, solve for y if $\ln y = \frac{1}{2}\ln 4 + \frac{2}{3} \ln 8$.
Solve for x if $\ln e^{\sqrt{x + 1}} = 3$.