Problem 04 | Bernoulli's Equation

Problem 04
y=yxy3e2x
 

Solution 04
y=yxy3e2x

dydxy=xe2xy3

dyy dx=xe2xy3 dx       → Bernoulli's equation

dy+Py dx=Qyn dx
 

From which
P=1

Q=xe2x

n=3

(1n)=2

z=y1n=y2
 

Integrating factor,
u=e(1n)P dx=e2(1) dx

u=e2dx=e2x
 

Thus,
zu=(1n)Qu dx+C