Problem 04
y′=y−xy3e−2x
Solution 04
y′=y−xy3e−2x
dydx−y=−xe−2xy3
dy−y dx=−xe−2xy3 dx → Bernoulli's equation
dy+Py dx=Qyn dx
From which
P=−1
Q=−xe−2x
n=3
(1−n)=−2
z=y1−n=y−2
Integrating factor,
u=e(1−n)∫P dx=e−2∫(−1) dx
u=e2∫dx=e2x
Thus,
zu=(1−n)∫Qu dx+C