Solution to Problem 204 Stress-strain Diagram

Problem 204
The following data were obtained during a tension test of an aluminum alloy. The initial diameter of the test specimen was 0.505 in. and the gage length was 2.0 in.
 

Load (lb) Elongation (in.) Load (lb) Elongation (in.)
0 0 14 000 0.020
2 310 0.00220 14 400 0.025
4 640 0.00440 14 500 0.060
6 950 0.00660 14 600 0.080
9 290 0.00880 14 800 0.100
11 600 0.0110 14 600 0.120
12 600 0.0150 13 600 Fracture

 

Plot the stress-strain diagram and determine the following mechanical properties: (a) proportional limit; (b) modulus of elasticity; (c) yield point; (d) yield strength at 0.2% offset; (e) ultimate strength; and (f) rupture strength.
 

Solution to Problem 203 Stress-strain Diagram

Problem 203
The following data were recorded during the tensile test of a 14-mm-diameter mild steel rod. The gage length was 50 mm.
 

Load (N) Elongation (mm) Load (N) Elongation (mm)
0 0 46 200 1.25
6 310 0.010 52 400 2.50
12 600 0.020 58 500 4.50
18 800 0.030 68 000 7.50
25 100 0.040 59 000 12.5
31 300 0.050 67 800 15.5
37 900 0.060 65 000 20.0
40 100 0.163 65 500 Fracture
41 600 0.433

 

Plot the stress-strain diagram and determine the following mechanical properties: (a) proportional limits; (b) modulus of elasticity; (c) yield point; (d) ultimate strength; and (e) rupture strength.
 

Axial Deformation

In the linear portion of the stress-strain diagram, the tress is proportional to strain and is given by
 

$\sigma = E \varepsilon$

 

since $\sigma = P / A$ and $\varepsilon = \delta / L$, then $\dfrac{P}{A} = E \dfrac{\delta}{L}$
 

$\delta = \dfrac{PL}{AE} = \dfrac{\sigma L}{E}$

To use this formula, the load must be axial, the bar must have a uniform cross-sectional area, and the stress must not exceed the proportional limit.
 

Stress-strain Diagram

Suppose that a metal specimen be placed in tension-compression-testing machine. As the axial load is gradually increased in increments, the total elongation over the gauge length is measured at each increment of the load and this is continued until failure of the specimen takes place. Knowing the original cross-sectional area and length of the specimen, the normal stress σ and the strain ε can be obtained. The graph of these quantities with the stress σ along the y-axis and the strain ε along the x-axis is called the stress-strain diagram. The stress-strain diagram differs in form for various materials. The diagram shown below is that for a medium-carbon structural steel.