Solid Geometry

Volume of Inflating Spherical Balloon as a Function of Time

Problem
A meteorologist is inflating a spherical balloon with a helium gas. If the radius of a balloon is changing at a rate of 1.5 cm/sec., express the volume V of the balloon as a function of time t (in seconds). Hint: Use composite function relationship Vsphere = 4/3 πr3 as a function of x (radius), and x (radius) as a function of t (time).

A.   V(t) = 5/2 πt3 C.   V(t) = 9/2 πt3
B.   V(t) = 7/2 πt3 D.   V(t) = 3/2 πt3

 

Ratio of Volume of Water to Volume of Conical Tank

Problem
A conical tank in upright position (vertex uppermost) stored water of depth 2/3 that of the depth of the tank. Calculate the ratio of the volume of water to that of the tank.

A.   4/5 C.   26/27
B.   18/19 D.   2/3

 

A solid spherical ball remolded into a hollow spherical ball

Problem
A 523.6 cm3 solid spherical steel ball was melted and remolded into a hollow steel ball so that the hollow diameter is equal to the diameter of the original steel ball. Find the thickness of the hollow steel ball.

A.   1.3 cm C.   1.2 cm
B.   1.5 cm D.   1.6 cm

 

 
 
Subscribe to RSS - Solid Geometry