# Solid Geometry

**Problem**

A meteorologist is inflating a spherical balloon with a helium gas. If the radius of a balloon is changing at a rate of 1.5 cm/sec., express the volume *V* of the balloon as a function of time *t* (in seconds). Hint: Use composite function relationship *V*_{sphere} = 4/3 π*r*^{3} as a function of *x* (radius), and *x* (radius) as a function of *t* (time).

A. V(t) = 5/2 πt^{3} |
C. V(t) = 9/2 πt^{3} |

B. V(t) = 7/2 πt^{3} |
D. V(t) = 3/2 πt^{3} |

**Problem**

A conical tank in upright position (vertex uppermost) stored water of depth 2/3 that of the depth of the tank. Calculate the ratio of the volume of water to that of the tank.

A. 4/5 | C. 26/27 |

B. 18/19 | D. 2/3 |