Problem 05
$y(x^4 - y^2) \, dx + x(x^4 + y^2) \, dy = 0$
Problem 05
$y(x^4 - y^2) \, dx + x(x^4 + y^2) \, dy = 0$
$x^4y \, dx - y^3 \, dx + x^5 \, dy + xy^2 \, dy = 0$
$(x^4y \, dx + x^5 \, dy) + (xy^2 \, dy - y^3 \, dx) = 0$
$x^4(y \, dx + x \, dy) + y^2(x \, dy - y \, dx) = 0$
$(y \, dx + x \, dy) + \dfrac{y^2(x \, dy - y \, dx)}{x^4} = 0$
$(y \, dx + x \, dy) + \dfrac{y^2}{x^2} \left( \dfrac{x \, dy - y \, dx}{x^2} \right) = 0$