Skip to main content
HomeMATHalinoEngineering Math Review

Search form

Login • Register

  • Home
    • Recent
    • Glossary
    • About
  • Algebra
    • Derivation of Formulas
    • Engineering Economy
    • General Engineering
  • Trigo
    • Spherical Trigonometry
  • Geometry
    • Solid Geometry
    • Analytic Geometry
  • Calculus
    • Integral Calculus
    • Differential Equations
    • Advance Engineering Mathematics
  • Mechanics
    • Strength of Materials
    • Structural Analysis
  • CE
    • CE Board: Math
    • CE Board: Hydro Geo
    • CE Board: Design
    • Surveying
    • Hydraulics
    • Timber Design
    • Reinforced Concrete
    • Geotechnical Engineering
  • Courses
    • Exams
    • Old MCQ
  • Forums
    • Basic Engineering Math
    • Calculus
    • Mechanics
    • General Discussions
  • Blogs

Breadcrumbs

You are here:

  1. Home
  2. Normal Stress

Normal Stress

Solution to Problem 111 Normal Stress

Problem 111
For the truss shown in Fig. P-111, calculate the stresses in members CE, DE, and DF. The cross-sectional area of each member is 1.8 in2. Indicate tension (T) or compression (C).
 

  • Read more about Solution to Problem 111 Normal Stress
  • Log in or register to post comments

Solution to Problem 110 Normal Stress

Problem 110
110-footing-wooden-post.gifA 12-inches square steel bearing plate lies between an 8-inches diameter wooden post and a concrete footing as shown in Fig. P-110. Determine the maximum value of the load P if the stress in wood is limited to 1800 psi and that in concrete to 650 psi.
 

  • Read more about Solution to Problem 110 Normal Stress
  • Log in or register to post comments

Solution to Problem 109 Normal Stress

Problem 109
Determine the largest weight W that can be supported by two wires shown in Fig. P-109. The stress in either wire is not to exceed 30 ksi. The cross-sectional areas of wires AB and AC are 0.4 in2 and 0.5 in2, respectively.
 

109-weight-cable-system.gif

 

  • Read more about Solution to Problem 109 Normal Stress
  • Log in or register to post comments

Solution to Problem 108 Normal Stress

Problem 108
An aluminum rod is rigidly attached between a steel rod and a bronze rod as shown in Fig. P-108. Axial loads are applied at the positions indicated. Find the maximum value of P that will not exceed a stress in steel of 140 MPa, in aluminum of 90 MPa, or in bronze of 100 MPa.
 

  • Read more about Solution to Problem 108 Normal Stress
  • Log in or register to post comments

Solution to Problem 107 Normal Stress

Problem 107
A rod is composed of an aluminum section rigidly attached between steel and bronze sections, as shown in Fig. P-107. Axial loads are applied at the positions indicated. If P = 3000 lb and the cross sectional area of the rod is 0.5 in2, determine the stress in each section.
 

107-composite-bar-two-forces_0.gif

 

  • Read more about Solution to Problem 107 Normal Stress
  • Log in or register to post comments

Solution to Problem 106 Normal Stress

Problem 106
The homogeneous bar shown in Fig. P-106 is supported by a smooth pin at C and a cable that runs from A to B around the smooth peg at D. Find the stress in the cable if its diameter is 0.6 inch and the bar weighs 6000 lb.
 

106-beam-with-chords.jpg

 

  • Read more about Solution to Problem 106 Normal Stress
  • Log in or register to post comments

Solution to Problem 105 | Normal Stress

Problem 105
A homogeneous 800 kg bar AB is supported at either end by a cable as shown in Fig. P-105. Calculate the smallest area of each cable if the stress is not to exceed 90 MPa in bronze and 120 MPa in steel.
 

  • Read more about Solution to Problem 105 | Normal Stress
  • Log in or register to post comments

Simple Stresses

Simple Stresses

  1. Normal Stress
  2. Shear Stress
  3. Bearing Stress
  4. Thin-walled Pressure Vessel
  • Read more about Simple Stresses
  • Log in or register to post comments

Solution to Problem 104 Normal Stress

Problem 104
A hollow steel tube with an inside diameter of 100 mm must carry a tensile load of 400 kN. Determine the outside diameter of the tube if the stress is limited to 120 MN/m2.
 

  • Read more about Solution to Problem 104 Normal Stress
  • 2 comments
  • Log in or register to post comments

Pagination

  • Previous page ‹‹
  • (Page 2)
Home • Forums • Blogs • Glossary • Recent
About • Contact us • Terms of Use • Privacy Policy • Hosted by Linode • Powered by Drupal
MATHalino - Engineering Mathematics • Copyright 2025 Jhun Vert • All rights reserved