Normal Stress

Solution to Problem 111 Normal Stress

Problem 111
For the truss shown in Fig. P-111, calculate the stresses in members CE, DE, and DF. The cross-sectional area of each member is 1.8 in2. Indicate tension (T) or compression (C).
 

Solution to Problem 110 Normal Stress

Problem 110
110-footing-wooden-post.gifA 12-inches square steel bearing plate lies between an 8-inches diameter wooden post and a concrete footing as shown in Fig. P-110. Determine the maximum value of the load P if the stress in wood is limited to 1800 psi and that in concrete to 650 psi.
 

Solution to Problem 109 Normal Stress

Problem 109
Determine the largest weight W that can be supported by two wires shown in Fig. P-109. The stress in either wire is not to exceed 30 ksi. The cross-sectional areas of wires AB and AC are 0.4 in2 and 0.5 in2, respectively.
 

109-weight-cable-system.gif

 

Solution to Problem 108 Normal Stress

Problem 108
An aluminum rod is rigidly attached between a steel rod and a bronze rod as shown in Fig. P-108. Axial loads are applied at the positions indicated. Find the maximum value of P that will not exceed a stress in steel of 140 MPa, in aluminum of 90 MPa, or in bronze of 100 MPa.
 

Solution to Problem 107 Normal Stress

Problem 107
A rod is composed of an aluminum section rigidly attached between steel and bronze sections, as shown in Fig. P-107. Axial loads are applied at the positions indicated. If P = 3000 lb and the cross sectional area of the rod is 0.5 in2, determine the stress in each section.
 

107-composite-bar-two-forces_0.gif

 

Solution to Problem 106 Normal Stress

Problem 106
The homogeneous bar shown in Fig. P-106 is supported by a smooth pin at C and a cable that runs from A to B around the smooth peg at D. Find the stress in the cable if its diameter is 0.6 inch and the bar weighs 6000 lb.
 

106-beam-with-chords.jpg

 

Solution to Problem 105 | Normal Stress

Problem 105
A homogeneous 800 kg bar AB is supported at either end by a cable as shown in Fig. P-105. Calculate the smallest area of each cable if the stress is not to exceed 90 MPa in bronze and 120 MPa in steel.
 

Simple Stresses

Simple Stresses

  1. Normal Stress
  2. Shear Stress
  3. Bearing Stress
  4. Thin-walled Pressure Vessel

Solution to Problem 104 Normal Stress

Problem 104
A hollow steel tube with an inside diameter of 100 mm must carry a tensile load of 400 kN. Determine the outside diameter of the tube if the stress is limited to 120 MN/m2.
 

Pages

Subscribe to RSS - Normal Stress