Problem 01
$(x^5 + 3y) \, dx - x \, dy = 0$
Solution 01
$(x^5 + 3y) \, dx - x \, dy = 0$
$\dfrac{(x^5 + 3y) \, dx}{x \, dx} - \dfrac{x \, dy}{x \, dx} = 0$
$\dfrac{x^5 + 3y}{x} - \dfrac{dy}{dx} = 0$
$x^4 + \dfrac{3y}{x} - \dfrac{dy}{dx} = 0$
$\dfrac{dy}{dx} - \dfrac{3}{x}y = x^4$ → linear in y
Hence,
$P = -\dfrac{3}{x}$
$Q = x^4$
Integrating factor:
$e^{\int P \, dx} = e^{\int \left( -\frac{3}{x} \right)dx}$
$e^{\int P \, dx} = e^{-3\int \frac{dx}{x}}$