integrating factor

Problem 03 | Integrating Factors Found by Inspection

Problem 03
$(x^3y^3 + 1) \, dx + x^4y^2 \, dy = 0$
 

Solution 03
$(x^3y^3 + 1) \, dx + x^4y^2 \, dy = 0$

$x^3y^3 \, dx + dx + x^4y^2 \, dy = 0$

$(x^3y^3 \, dx + x^4y^2 \, dy) + dx = 0$

$x^3y^2(y \, dx + x \, dy) + dx = 0$

$x^3y^2 \, d(xy) + dx = 0$
 

Divide by x both sides
$x^2y^2 \, d(xy) + \dfrac{dx}{x} = 0$

$\displaystyle \int (xy)^2 \, d(xy) + \int \dfrac{dx}{x} = 0$

$\frac{1}{3}(xy)^3 + \ln x = -\ln c$

$x^3y^3 + 3\ln x = -3\ln c$

$x^3y^3 = -3\ln c - 3\ln x$

$x^3y^3 = -3(\ln c + \ln x)$

Problem 02 | Integrating Factors Found by Inspection

Problem 02
$y(y^3 - x) \, dx + x(y^3 + x) \, dy = 0$
 

Solution 02
$y(y^3 - x) \, dx + x(y^3 + x) \, dy = 0$

$y^4 \, dx - xy \, dx + xy^3 \, dy + x^2 \, dy = 0$

$(y^4 \, dx + xy^3 \, dy) - (xy \, dx - x^2 \, dy) = 0$

$y^3(y \, dx + x \, dy) - x(y \, dx - x \, dy) = 0$

$y^3 \, d(xy) - x(y \, dx - x \, dy) = 0$
 

Divide by y3
$d(xy) - \dfrac{x}{y} \left( \dfrac{y \, dx - x \, dy}{y^2} \right) = 0$

$d(xy) - \dfrac{x}{y} \, d\left( \dfrac{x}{y} \right) = 0$

Integrating Factors Found by Inspection

This section will use the following four exact differentials that occurs frequently.

  1. $d(xy) = x \, dy + y \, dx$
     
  2. $d\left( \dfrac{x}{y} \right) = \dfrac{y \, dx - x \, dy}{y^2}$
     
  3. $d\left( \dfrac{y}{x} \right) = \dfrac{x \, dy - y \, dx}{x^2}$
     
  4. $d\left( \arctan \dfrac{y}{x} \right) = \dfrac{x \, dy - y \, dx}{x^2 + y^2}$
  5.  

  6. $d\left( \arctan \dfrac{x}{y} \right) = \dfrac{y \, dx - x \, dy}{x^2 + y^2}$

 

Problem 04 | Linear Equations

Problem 04
$(y + 1) \, dx + (4x - y) \, dy = 0$
 

Solution 04
$(y + 1) \, dx + (4x - y) \, dy = 0$

$\dfrac{(y + 1) \, dx}{(y + 1) \, dy} + \dfrac{(4x - y) \, dy}{(y + 1) \, dy} = 0$

$\dfrac{dx}{dy} + \dfrac{4x - y}{y + 1} = 0$

$\dfrac{dx}{dy} + \dfrac{4x}{y + 1} - \dfrac{y}{y + 1} = 0$

$\dfrac{dx}{dy} + \left( \dfrac{4}{y + 1} \right)x = \dfrac{y}{y + 1}$       → linear in x
 

Hence,
$P = \dfrac{4}{y + 1}$

$Q = \dfrac{y}{y + 1}$
 

Integrating factor:

Problem 03 | Linear Equations

Problem 03
$y' = x - 2y$
 

Solution 03
$y' = x - 2y$

$\dfrac{dy}{dx} + 2y = x$       → linear in y
 

Hence,
$P = 2$

$Q = x$
 

Integrating factor:
$\displaystyle e^{\int P \, dx} = e^{\int 2 \, dx}$

$\displaystyle e^{\int P \, dx} = e^{2x}$
 

Thus,
$\displaystyle ye^{\int P\,dx} = \int Qe^{\int P\,dx} \, dx + C$

$\displaystyle ye^{2x} = \int xe^{2x} \, dx + c$
 

Using integration by parts
$u = x$,   $du = dx$

Problem 02 | Linear Equations

Problem 02
$2(2xy + 4y - 3) \, dx + (x + 2)^2 \, dy = 0$
 

Solution 02
$2(2xy + 4y - 3) \, dx + (x + 2)^2 \, dy = 0$

$2[ \, 2y(x + 2) - 3 \, ] \, dx + (x + 2)^2 \, dy = 0$

$\dfrac{2[ \, 2y(x + 2) - 3 \, ] \, dx}{(x + 2)^2 \, dx} + \dfrac{(x + 2)^2 \, dy}{(x + 2)^2 \, dx} = 0$

$\dfrac{4y(x + 2) - 6}{(x + 2)^2} + \dfrac{dy}{dx} = 0$

$\dfrac{4y(x + 2)}{(x + 2)^2} - \dfrac{6}{(x + 2)^2} + \dfrac{dy}{dx} = 0$

$\left( \dfrac{4}{x + 2} \right) y - \dfrac{6}{(x + 2)^2} + \dfrac{dy}{dx} = 0$

Problem 01 | Linear Equations

Problem 01
$(x^5 + 3y) \, dx - x \, dy = 0$
 

Solution 01
$(x^5 + 3y) \, dx - x \, dy = 0$

$\dfrac{(x^5 + 3y) \, dx}{x \, dx} - \dfrac{x \, dy}{x \, dx} = 0$

$\dfrac{x^5 + 3y}{x} - \dfrac{dy}{dx} = 0$

$x^4 + \dfrac{3y}{x} - \dfrac{dy}{dx} = 0$

$\dfrac{dy}{dx} - \dfrac{3}{x}y = x^4$       → linear in y
 

Hence,
$P = -\dfrac{3}{x}$

$Q = x^4$
 

Integrating factor:
$e^{\int P \, dx} = e^{\int \left( -\frac{3}{x} \right)dx}$

$e^{\int P \, dx} = e^{-3\int \frac{dx}{x}}$

Pages

Subscribe to RSS - integrating factor