Problem 04 | Linear Equations

Problem 04
$(y + 1) \, dx + (4x - y) \, dy = 0$
 

Solution 04
$(y + 1) \, dx + (4x - y) \, dy = 0$

$\dfrac{(y + 1) \, dx}{(y + 1) \, dy} + \dfrac{(4x - y) \, dy}{(y + 1) \, dy} = 0$

$\dfrac{dx}{dy} + \dfrac{4x - y}{y + 1} = 0$

$\dfrac{dx}{dy} + \dfrac{4x}{y + 1} - \dfrac{y}{y + 1} = 0$

$\dfrac{dx}{dy} + \left( \dfrac{4}{y + 1} \right)x = \dfrac{y}{y + 1}$       → linear in x
 

Hence,
$P = \dfrac{4}{y + 1}$

$Q = \dfrac{y}{y + 1}$
 

Integrating factor:

Problem 03 | Linear Equations

Problem 03
$y' = x - 2y$
 

Solution 03
$y' = x - 2y$

$\dfrac{dy}{dx} + 2y = x$       → linear in y
 

Hence,
$P = 2$

$Q = x$
 

Integrating factor:
$\displaystyle e^{\int P \, dx} = e^{\int 2 \, dx}$

$\displaystyle e^{\int P \, dx} = e^{2x}$
 

Thus,
$\displaystyle ye^{\int P\,dx} = \int Qe^{\int P\,dx} \, dx + C$

$\displaystyle ye^{2x} = \int xe^{2x} \, dx + c$
 

Using integration by parts
$u = x$,   $du = dx$

Problem 02 | Linear Equations

Problem 02
$2(2xy + 4y - 3) \, dx + (x + 2)^2 \, dy = 0$
 

Solution 02
$2(2xy + 4y - 3) \, dx + (x + 2)^2 \, dy = 0$

$2[ \, 2y(x + 2) - 3 \, ] \, dx + (x + 2)^2 \, dy = 0$

$\dfrac{2[ \, 2y(x + 2) - 3 \, ] \, dx}{(x + 2)^2 \, dx} + \dfrac{(x + 2)^2 \, dy}{(x + 2)^2 \, dx} = 0$

$\dfrac{4y(x + 2) - 6}{(x + 2)^2} + \dfrac{dy}{dx} = 0$

$\dfrac{4y(x + 2)}{(x + 2)^2} - \dfrac{6}{(x + 2)^2} + \dfrac{dy}{dx} = 0$

$\left( \dfrac{4}{x + 2} \right) y - \dfrac{6}{(x + 2)^2} + \dfrac{dy}{dx} = 0$

Problem 01 | Linear Equations

Problem 01
$(x^5 + 3y) \, dx - x \, dy = 0$
 

Solution 01
$(x^5 + 3y) \, dx - x \, dy = 0$

$\dfrac{(x^5 + 3y) \, dx}{x \, dx} - \dfrac{x \, dy}{x \, dx} = 0$

$\dfrac{x^5 + 3y}{x} - \dfrac{dy}{dx} = 0$

$x^4 + \dfrac{3y}{x} - \dfrac{dy}{dx} = 0$

$\dfrac{dy}{dx} - \dfrac{3}{x}y = x^4$       → linear in y
 

Hence,
$P = -\dfrac{3}{x}$

$Q = x^4$
 

Integrating factor:
$e^{\int P \, dx} = e^{\int \left( -\frac{3}{x} \right)dx}$

$e^{\int P \, dx} = e^{-3\int \frac{dx}{x}}$

Problem 04 | Exact Equations

Problem 04
$(y^2 - 2xy + 6x) \, dx - (x^2 - 2xy + 2) \, dy = 0$
 

Solution 04
$(y^2 - 2xy + 6x) \, dx - (x^2 - 2xy + 2) \, dy = 0$

$M = y^2 - 2xy + 6x$

$N = -x^2 + 2xy - 2$
 

Test for exactness
$\dfrac{\partial M}{\partial y} = 2y - 2x$

$\dfrac{\partial N}{\partial x} = -2x + 2y$

Exact!
 

Let
$\dfrac{\partial F}{\partial x} = M$

$\dfrac{\partial F}{\partial x} = y^2 - 2xy + 6x$

$\partial F = (y^2 - 2xy + 6x) \, \partial x$
 

Integrate partially in x, holding y as constant

Problem 03 | Exact Equations

Problem 03
$(2xy - 3x^2) \, dx + (x^2 + y) \, dy = 0$
 

Solution 03
$(2xy - 3x^2) \, dx + (x^2 + y) \, dy = 0$
 

$M = 2xy - 3x^2$

$N = x^2 + y$
 

Test for exactness
$\dfrac{\partial M}{\partial y} = 2x$

$\dfrac{\partial N}{\partial x} = 2x$

Exact!
 

Let
$\dfrac{\partial F}{\partial x} = M$

$\dfrac{\partial F}{\partial x} = 2xy - 3x^2$

$\partial F = (2xy - 3x^2) \, \partial x$
 

Integrate partially in x, holding y as constant

Problem 02 | Exact Equations

Problem 02
$(6x + y^2) \, dx + y(2x - 3y) \, dy = 0$
 

Solution 02
$(6x + y^2) \, dx + y(2x - 3y) \, dy = 0$
 

$M = 6x + y^2$

$N = y(2x - 3y) = 2xy - 3y^2$
 

Test for exactness
$\dfrac{\partial M}{\partial y} = 2y$

$\dfrac{\partial N}{\partial x} = 2y$

Exact!
 

Let
$\dfrac{\partial F}{\partial x} = M$

$\dfrac{\partial F}{\partial x} = 6x + y^2$

$\partial F = (6x + y^2) \, \partial x$
 

Integrate partially in x, holding y as constant

Problem 01 | Exact Equations

Problem 01
$(x + y) \, dx + (x - y) \, dy = 0$
 

Solution 01
$(x + y) \, dx + (x - y) \, dy = 0$
 

Test for exactness
$M = x + y$   ;   $\dfrac{\partial M}{\partial y} = 1$

$N = x - y$   ;   $\dfrac{\partial N}{\partial x} = 1$

$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$   ;   thus, exact!
 

Step 1: Let
$\dfrac{\partial F}{\partial x} = M$

$\dfrac{\partial F}{\partial x} = x + y$
 

Problem 04 | Equations with Homogeneous Coefficients

Problem 04
$xy \, dx - (x^2 + 3y^2) \, dy = 0$
 

Solution 04
$xy \, dx - (x^2 + 3y^2) \, dy = 0$
 

Let
$x = vy$

$dx = v \, dy + y \, dv$
 

$vy^2(v \, dy + y \, dv) - (v^2y^2 + 3y^2) \, dy = 0$

$vy^2(v \, dy + y \, dv) - y^2(v^2 + 3) \, dy = 0$

$v(v \, dy + y \, dv) - (v^2 + 3) \, dy = 0$

$v^2 \, dy + vy \, dv - v^2 \, dy - 3 \, dy = 0$

$vy \, dv - 3 \, dy = 0$

$v \, dv - \dfrac{3 \, dy}{y} = 0$

$\displaystyle \int v \, dv - 3 \int \dfrac{dy}{y} = 0$

Problem 03 | Equations with Homogeneous Coefficients

Problem 03
$2(2x^2 + y^2) \, dx - xy \, dy = 0$
 

Solution 03
$2(2x^2 + y^2) \, dx - xy \, dy = 0$
 

Let
$y = vx$

$dy = v \, dx + x \, dv$
 

$2(2x^2 + v^2x^2) \, dx - vx^2(v \, dx + x \, dv) = 0$

$4x^2 \, dx + 2v^2x^2 \, dx - v^2x^2 \, dx - vx^3 \, dv = 0$

$4x^2 \, dx + v^2x^2 \, dx - vx^3 \, dv = 0$

$x^2(4 + v^2) \, dx - vx^3 \, dv = 0$

$\dfrac{x^2(4 + v^2) \, dx}{x^3(4 + v^2)} - \dfrac{vx^3 \, dv}{x^3(4 + v^2)} = 0$

$\dfrac{dx}{x} - \dfrac{v \, dv}{4 + v^2} = 0$