# fully restrained beam

## Problem 715 | Distributed loads placed symmetrically over fully restrained beam

## Problem 714 | Triangular load over the entire span of fully restrained beam

**Problem 714**

Determine the end moments of the restrained beam shown in Fig. P-714.

**Solution**

$\delta_A = 0$

$\delta_{triangular\,\,load} - \delta_{fixed\,\,end\,\,moment} - \delta_{reaction\,\,at\,\,A} = 0$

## Problem 713 | Fully restrained beam with symmetrically placed concentrated loads

## Application of Double Integration and Superposition Methods to Restrained Beams

## Superposition Method

There are 12 cases listed in the method of superposition for beam deflection.

- Cantilever beam with...
- concentrated load at the free end.
- concentrated load anywhere on the beam.
- uniform load over the entire span.
- triangular load with zero at the free end
- moment load at the free end.

- Simply supported beam with...
- concentrated load at the midspan.
- concentrated load anywhere on the beam span.
- uniform load over the entire span.
- triangular load which is zero at one end and full at the other end.
- triangular load with zero at both ends and full at the midspan.
- moment load at the right support.
- moment load at the left support.

See beam deflection by superposition method for details.