The digits of a three-digit number are in arithmetic progression, find the sum of all the digits

Problem
The digits of a three-digit number are in arithmetic progression. If you divide the number by the sum of its digits, the quotient is 26. If the digits are reversed, the resulting number is 198 more than the original number. Find the sum of all the digits.

A.   9 C.   15
B.   12 D.   18

 

General Term of Arithmetic Sequence that Models the Potential Annual Salaries

Problem
A job posted at jobstreet.com offered a starting salary of \$40,000 per year and guaranteeing a raise of \$1600 per year for the rest of 5 years. Write the general term for the arithmetic sequence that models potential annual salaries.

A.   an = 38,400 + 1600n
B.   an = 33,400 + 2600n
C.   an = 36,400 + 1400n
D.   an = 34,400 +1800n

Relationship Between Arithmetic Mean, Harmonic Mean, and Geometric Mean of Two Numbers

For two numbers x and y, let x, a, y be a sequence of three numbers. If x, a, y is an arithmetic progression then 'a' is called arithmetic mean. If x, a, y is a geometric progression then 'a' is called geometric mean. If x, a, y form a harmonic progression then 'a' is called harmonic mean.
 

Let AM = arithmetic mean, GM = geometric mean, and HM = harmonic mean. The relationship between the three is given by the formula
 

$AM \times HM = GM^2$

 

Below is the derivation of this relationship.
 

Derivation of Sum of Arithmetic Progression

Arithmetic Progression, AP
Definition

Arithmetic Progression (also called arithmetic sequence), is a sequence of numbers such that the difference between any two consecutive terms is constant. Each term therefore in an arithmetic progression will increase or decrease at a constant value called the common difference, d.
 

Examples of arithmetic progression are:

  • 2, 5, 8, 11,... common difference = 3
  • 23, 19, 15, 11,... common difference = -4