Relationship Between Arithmetic Mean, Harmonic Mean, and Geometric Mean of Two Numbers
For two numbers x and y, let x, a, y be a sequence of three numbers. If x, a, y is an arithmetic progression then 'a' is called arithmetic mean. If x, a, y is a geometric progression then 'a' is called geometric mean. If x, a, y form a harmonic progression then 'a' is called harmonic mean.
Let AM = arithmetic mean, GM = geometric mean, and HM = harmonic mean. The relationship between the three is given by the formula
$AM \times HM = GM^2$
Below is the derivation of this relationship.