Find the volume generated by revolving the area on the 1st and 4th quadrants by the ellipse y^2 / 9 + x^2 / 4 = 1 about the line x = 3. Find the volume generated by revolving the area on the 1st and 4th quadrants by the ellipse y2/9 + x2/4 = 1 about the line x = 3. A. 355.31 C. 255.23 B. 127.39 D. 154.25 Log in or register to post comments Solution By Pappus Theorem… Jhun Vert Sat, 06/29/2024 - 22:25 Solution By Pappus Theorem Click here to expand or collapse this section $V = A \times 2\pi R$ $V = A \times 2\pi (3 - x_c)$ $V = \frac{1}{2}\pi ab \times 2\pi \left( 3 - \dfrac{4b}{3\pi} \right)$ $V = \frac{1}{2}\pi(3)(2) \times 2\pi \left( 3 - \dfrac{4(2)}{3\pi} \right)$ $V = 127.39 ~ \text{unit}^3$ Solution By Integration Click here to expand or collapse this section $\dfrac{y^2}{9} + \dfrac{x^2}{4} = 1$ $\dfrac{x^2}{4} = 1 - \dfrac{y^2}{9}$ $x^2 = 4\left( 1 - \dfrac{y^2}{9} \right)$ $x = 2\sqrt{1 - \dfrac{y^2}{9}}$ $\displaystyle V = \int_{y_1}^{y_2} \pi (R^2 - r^2) \, dy$ $\displaystyle V = 2\pi \int_0^3 \left[ 3^2 - (3 - x)^2 \right] \, dy$ $\displaystyle V = 2\pi \int_0^3 \left[ 9 - \left( 3 - 2\sqrt{1 - \dfrac{y^2}{9}} \right)^2 \right] dy$ $V = 127.39 ~ \text{unit}^3$ Log in or register to post comments
Solution By Pappus Theorem… Jhun Vert Sat, 06/29/2024 - 22:25 Solution By Pappus Theorem Click here to expand or collapse this section $V = A \times 2\pi R$ $V = A \times 2\pi (3 - x_c)$ $V = \frac{1}{2}\pi ab \times 2\pi \left( 3 - \dfrac{4b}{3\pi} \right)$ $V = \frac{1}{2}\pi(3)(2) \times 2\pi \left( 3 - \dfrac{4(2)}{3\pi} \right)$ $V = 127.39 ~ \text{unit}^3$ Solution By Integration Click here to expand or collapse this section $\dfrac{y^2}{9} + \dfrac{x^2}{4} = 1$ $\dfrac{x^2}{4} = 1 - \dfrac{y^2}{9}$ $x^2 = 4\left( 1 - \dfrac{y^2}{9} \right)$ $x = 2\sqrt{1 - \dfrac{y^2}{9}}$ $\displaystyle V = \int_{y_1}^{y_2} \pi (R^2 - r^2) \, dy$ $\displaystyle V = 2\pi \int_0^3 \left[ 3^2 - (3 - x)^2 \right] \, dy$ $\displaystyle V = 2\pi \int_0^3 \left[ 9 - \left( 3 - 2\sqrt{1 - \dfrac{y^2}{9}} \right)^2 \right] dy$ $V = 127.39 ~ \text{unit}^3$ Log in or register to post comments
Solution By Pappus Theorem…