If $\theta$ is an acute angle of a right triangle where $\sin \theta = x/2$, compute the value of $\sin 2\theta$ in terms of $x$. If $\theta$ is an acute angle of a right triangle where $\sin \theta = x/2$, compute the value of $\sin 2\theta$ in terms of $x$. A. $\dfrac{x}{\sqrt{4 - x^2}}$ C. $2x \sqrt{4 - x^2}$ B. $\frac{1}{2}x \sqrt{4 - x^2}$ D. $\dfrac{\sqrt{4 - x^2}}{x}$ Log in or register to post comments Solution Click here to… Jhun Vert Sat, 06/15/2024 - 16:04 Solution Click here to expand or collapse this section $\begin{align} \sin 2\theta & = 2\sin \theta \cos \theta \\ \\ & = 2 \cdot \dfrac{x}{2} \cdot \dfrac{\sqrt{4 - x^2}}{2} \\ \\ & = \frac{1}{2}x\sqrt{4 - x^2} \end{align}$ Log in or register to post comments
Solution Click here to… Jhun Vert Sat, 06/15/2024 - 16:04 Solution Click here to expand or collapse this section $\begin{align} \sin 2\theta & = 2\sin \theta \cos \theta \\ \\ & = 2 \cdot \dfrac{x}{2} \cdot \dfrac{\sqrt{4 - x^2}}{2} \\ \\ & = \frac{1}{2}x\sqrt{4 - x^2} \end{align}$ Log in or register to post comments
Solution Click here to…