From the given right triangle what is the value of $3 \sin^2 \varphi \, \sec \varphi$ in terms of $x$. From the given right triangle what is the value of $3 \sin^2 \varphi \, \sec \varphi$ in terms of $x$. A. $\dfrac{x}{\sqrt{x^2 + 9}}$ C. $\dfrac{x^2 + 9}{\sqrt{x^2 - 9}}$ B. $\dfrac{9}{\sqrt{x^2 + 9}}$ D. $\dfrac{x^2}{\sqrt{x^2 + 9}}$ Log in or register to post comments Solution Click here to… Jhun Vert Wed, 06/12/2024 - 20:55 Solution Click here to expand or collapse this section $\sin \varphi = \dfrac{x}{\sqrt{x^2 + 9}}$ $\sec \varphi = \dfrac{\sqrt{x^2 + 9}}{3}$ $\begin{align} 3 \sin^2 \varphi \, \sec \varphi & = 3 \cdot \left( \dfrac{x}{\sqrt{x^2 + 9}} \right)^2 \cdot \dfrac{\sqrt{x^2 + 9}}{3} \\ \\ & = \dfrac{x^2}{x^2 + 9} \cdot \sqrt{x^2 + 9} \\ \\ & = \dfrac{x^2}{\sqrt{x^2 + 9}} \end{align}$ Log in or register to post comments
Solution Click here to… Jhun Vert Wed, 06/12/2024 - 20:55 Solution Click here to expand or collapse this section $\sin \varphi = \dfrac{x}{\sqrt{x^2 + 9}}$ $\sec \varphi = \dfrac{\sqrt{x^2 + 9}}{3}$ $\begin{align} 3 \sin^2 \varphi \, \sec \varphi & = 3 \cdot \left( \dfrac{x}{\sqrt{x^2 + 9}} \right)^2 \cdot \dfrac{\sqrt{x^2 + 9}}{3} \\ \\ & = \dfrac{x^2}{x^2 + 9} \cdot \sqrt{x^2 + 9} \\ \\ & = \dfrac{x^2}{\sqrt{x^2 + 9}} \end{align}$ Log in or register to post comments
Solution Click here to…