Determine the value of x if log (x^3 - 1) - log (x^2 + x + 1) = 1. Determine the value of x if log (x3 - 1) - log (x2 + x + 1) = 1. A. 11 C. 9 B. 10 D. 8 Log in or register to post comments Determine the value of x if… Jhun Vert Fri, 06/07/2024 - 20:39 Solution Click here to expand or collapse this section $\log (x^3 - 1) - \log (x^2 + x + 1) = 1$ $\log \left( \dfrac{x^3 - 1}{x^2 + x + 1} \right) = 1$ $\dfrac{x^3 - 1}{x^2 + x + 1} = 10^1$ $x^3 - 1 = 10(x^2 + x + 1)$ $x^3 - 1 = 10x^2 + 10x + 10$ $x^3 - 10x^2 - 10x - 11 = 0$ $x = 11$ Log in or register to post comments
Determine the value of x if… Jhun Vert Fri, 06/07/2024 - 20:39 Solution Click here to expand or collapse this section $\log (x^3 - 1) - \log (x^2 + x + 1) = 1$ $\log \left( \dfrac{x^3 - 1}{x^2 + x + 1} \right) = 1$ $\dfrac{x^3 - 1}{x^2 + x + 1} = 10^1$ $x^3 - 1 = 10(x^2 + x + 1)$ $x^3 - 1 = 10x^2 + 10x + 10$ $x^3 - 10x^2 - 10x - 11 = 0$ $x = 11$ Log in or register to post comments
Determine the value of x if…