If $\log_x 2 = 1.2a$ and $\log_x 3 = 1.5a$, find $\log_x \sqrt{12}$ . If $\log_x 2 = 1.2a$ and $\log_x 3 = 1.5a$, find $\log_x \sqrt{12}$ . A. 2.7a C. 2.1a B. 1.35a D. 1.95a Log in or register to post comments Solution Click here to… Jhun Vert Fri, 06/07/2024 - 20:31 Solution Click here to expand or collapse this section $\begin{align} \log_x \sqrt{12} & = \log_x 12^{0.5} \\ & = 0.5 \log_x 12 \\ & = 0.5 \log_x (4 \times 3) \\ & = 0.5 \log_x 4 + 0.5 \log_x 3 \\ & = 0.5 \log_x 2^2 + 0.5 \log_x 3 \\ & = 0.5(2) \log_x 2 + 0.5 \log_x 3 \\ & = \log_x 2 + 0.5 \log_x 3 \\ & = 1.2a + 0.5(1.5a) \\ & = 1.95a \end{align}$ Log in or register to post comments
Solution Click here to… Jhun Vert Fri, 06/07/2024 - 20:31 Solution Click here to expand or collapse this section $\begin{align} \log_x \sqrt{12} & = \log_x 12^{0.5} \\ & = 0.5 \log_x 12 \\ & = 0.5 \log_x (4 \times 3) \\ & = 0.5 \log_x 4 + 0.5 \log_x 3 \\ & = 0.5 \log_x 2^2 + 0.5 \log_x 3 \\ & = 0.5(2) \log_x 2 + 0.5 \log_x 3 \\ & = \log_x 2 + 0.5 \log_x 3 \\ & = 1.2a + 0.5(1.5a) \\ & = 1.95a \end{align}$ Log in or register to post comments
Solution Click here to…