Centroids and Centers of Gravity
Centroids of Composite Figures
$W \, \bar{y} = \Sigma wy$
$A \, \bar{y} = \Sigma ay$
$L \, \bar{y} = \Sigma ly$
Back to top
Center of Gravity of Bodies and Centroids of Volumes
$W \, \bar{y} = \Sigma wy$
$W \, \bar{z} = \Sigma wz$
$V \, \bar{y} = \Sigma vy$
$V \, \bar{z} = \Sigma vz$
Back to top
Centroids Determined by Integration
$\displaystyle A \, \bar{y} = \int_a^b y_c \, dA$
$\displaystyle L \, \bar{y} = \int_a^b y_c \, dL$
$\displaystyle W \, \bar{y} = \int_a^b y_c \, dW$
$\displaystyle W \, \bar{z} = \int_a^b z_c \, dW$
$\displaystyle V \, \bar{y} = \int_a^b y_c \, dV$
$\displaystyle V \, \bar{z} = \int_a^b z_c \, dV$
Centroids of Common Geometric Shapes
Rectangle | Area and Centroid |
|
$A = bd$
$\bar{x} = \frac{1}{2}b$ $\bar{y} = \frac{1}{2}d$ |
Triangle | Area and Centroid |
|
$A = \frac{1}{2}bh$
$\bar{y} = \frac{1}{3}h$ |
Circle | Area and Centroid |
|
$A = \pi r^2$
$\bar{x} = 0$ $\bar{y} = 0$ |
Semicircle | Area and Centroid |
|
$A = \frac{1}{2}\pi r^2$
$\bar{x} = 0$ $\bar{y} = \dfrac{4r}{3\pi}$ |
Semicircular Arc | Length and Centroid |
|
$L = \pi r$
$\bar{x} = \dfrac{2r}{\pi}$ $\bar{y} = 0$ |
Quarter Circle | Area and Centroid |
|
$A = \frac{1}{4}\pi r^2$
$\bar{x} = \dfrac{4r}{3\pi}$ $\bar{y} = \dfrac{4r}{3\pi}$ |
Sector of a Circle | Area and Centroid |
|
$A = r^2 \theta_{rad}$
$\bar{x} = \dfrac{2r \sin \theta}{3\theta_{rad}}$ $\bar{y} = 0$ |
Circular Arc | Length and Centroid |
|
$L = 2r \theta_{rad}$
$\bar{x} = \dfrac{r \sin \theta}{\theta_{rad}}$ $\bar{y} = 0$ |
Ellipse | Area and Centroid |
|
$A = \pi ab$
$\bar{x} = 0$ $\bar{y} = 0$ |
Half Ellipse | Area and Centroid |
|
$A = \frac{1}{2}\pi ab$
$\bar{x} = 0$ $\bar{y} = \dfrac{4b}{3\pi}$ |
Quarter Ellipse | Area and Centroid |
|
$A = \frac{1}{4}\pi ab$
$\bar{x} = \dfrac{4a}{3\pi}$ $\bar{y} = \dfrac{4b}{3\pi}$ |
Parabolic Segment | Area and Centroid |
|
$A = \frac{2}{3} bh$
$\bar{x} = \frac{3}{8}b$ $\bar{y} = \frac{2}{5}h$ |
Spandrel | Area and Centroid |
|
$A = \dfrac{1}{n + 1} bh$
$\bar{x} = \dfrac{1}{n + 2}b$ $\bar{y} = \dfrac{n + 1}{4n + 2}h$ |