Graph of
y=asinπxL
Differential area
dA=ydx
dA=asinπxLdx
Area by integration
A=a∫L0sinπxLdx
A=aLπ∫L0(sinπxL)(πLdx)
A=aLπ[−cosπxL]L0
A=−aLπ[cosπ−cos0]
A=−aLπ[−2]
A=2aLπ
Location of centroid
Aˉy=∫baycdA
2aLπˉy=∫L0(12y)(ydx)
2aLπˉy=12∫L0y2dx
2aLπˉy=12∫L0(asinπxL)2dx
2aLπˉy=a22∫L0sin2πxLdx
From
cos2θ=1−2sin2θ
sin2θ=12(1−cos2θ)
Assign θ=πxL
Thus,
2aLπˉy=a22∫L012(1−cos2πxL)dx
2aLπˉy=a24[x−L2πsin2πxL]L0
2aLπˉy=a24[(L−L2πsin2π)−(0−L2πsin0)]
2aLπˉy=a24[L]
2aLπˉy=a2L4
ˉy=πa8 answer