fv=VQIb
Where
V=100(1000)=100000N
I=120(2003)12−100(1603)12=45866666.67mm4
b=20mm
Maximum horizontal shear stress occurs at the neutral axis
QNA=120(20)(90)+20(80)(40)=280000mm3
Thus,
(fv)max=100000(280000)45866666.67(20)
(fv)max=30.52 MPa answer
Minimum horizontal shear stress in the web occurs at the junction of flange and web
Q=120(20)(90)=216000mm3
(fv)min=100000(216000)45866666.67(20)
(fv)min=23.55 MPa answer
The horizontal shearing stresses vary parabolically from the top to the bottom of the web. Recall that the average height of parabolic segment is 2/3 of its altitude measured from its base. Thus,
(fv)ave=(fv)min+23[(fv)max−(fv)min]
(fv)ave=23.55+23[30.52−23.55]
(fv)ave=28.20 MPa
Shear force carried by web alone
Force = Stress × Area
Vweb=(fv)aveAweb
Vweb=28.20(160×20)
Vweb=90229.33N
Vweb=90.23 kN
Percentage of shear force carried by web alone
%Vweb=VwebV×100%
%Vweb=90.23100×100%
%Vweb=90.23% answer